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TOPICAL REVIEW

Threshold pion photoproduction on nucleons*

Dieter Drechsel and Lothar Tiator

[nstitut fiir Kernphysik, Universitdt Mainz, D-6500 Mainz, Federal Republic of
Germany

Abstract. Pion photo- and electroproduction off the nucleon at threshold is reviewed in
theory and experiment. In this region the leading S-wave amplitudes (E;,) are
predicted by low-energy theorems (LET) based on current conservation and chiral
symmetry. While these predictions are in agreement with the data for charged pion
production, LET cannot explain the reaction p(y, #°)p over the energy range of the first
10 MeV above threshold. Present calculations involving final state interactions are
difficuelt to reconcile with the requirements of LET and suffer from a strong model
dependence due to off-shell formfactors.

With the completion of the new electron accelerators with high duty faclur and hlgh
intensity, new types of coincidence experiments with polarization degrees of freedom
will be performed. We review the formalism for such reactions and present the
multipole decomposition of the various response functions. The new experimental
capabilities allow some of the most challenging problems of intermediate energy physics
to be attacked, such as the puzzle of neutral pion production at threshold, the electric
quadrupole amplitude in the region of the A resonance (*bag deformation’), the
Coulomb monopole amplitude near the Roper resonance (‘breathing mode’), the
production of n-mesons via the N*(1535) and the production of two pions and more to
test consequences of chiral symmetry and the interaction of pions at low energies.

1. Introduction

In order to explain the short-range nature of the nuclear forces, Yukawa (1935)
postulated the existence of the pion. Shortly after, Kemmer (1938) formulated a
theary of the strong interactions on the basis of invariance under rotations in
lsnspace taking into account the nucleon (isodoublet p, n) and the pion (isotriplet
n*, % 7). The carriers of the nuclear forces were identified experimentally much
later charged pions by Lattes ef al (1947) and neutral pions by Panofsky ef al (1950).

The theory of photoproduction of pions was written in the 50s. Kroll and
Ruderman (1954) were the first to derive model-independent predictions in the
threshold region, so-called low energy theorems (Ler), by applying gauge and
Lorentz invariance to the reaction y + N— o + N. The general formalism for this
process was developed by Chew et al (1957, caLn amplitudes). Fubini et al (1965)
extended the earlier predictions of LET by including also the hypothesis of a partialty

conserved axial current (pcac). In this way they succeeded in describing the
threshold amplitude as a power series in the ratio u = m,/my up to terms of order
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Table 1. Basic properties of & and 7 mesons (sce Aguilar-Benitez ef af (1990) for more

details)
Mass Lifetime Decay modes
1 J¢ (MeV)  (s) (%)

7t 17 07 - 13957 260x107° v, (100)

A 17 07t 13497 84x107Y Yy (98.8)
yeTe” (1.2)

1 0t 0% 5488 5.5x107% vy (38.9)
3’ (31.9)

ata~at  (23.6)

u?. Berends et al (1967) analysed the existing data in terms of a muitipole
decomposition and presented tables of the various multipole amplitudes contributing
in the region up to excitation energies of 500 MeV.

The basic properties of the pion are listed in table 1. Due to electromagnetic
interactions the isospin symmetry between charged and neutral pions is broken,
giving rise to a mass splitting of about 5 MeV and a very dramatic decrease of the
lifetime of neutral pions because of the decay al—y+y.

The spatial extension of the pion is an important manifestation of its internal
degrees of freedom. Its form factor follows a simple monopole form,

E. =(1+b*Q%7".

Such a behaviour is predicted for Q°— « by asymptotic quantum chromodynamics,
because it requires the exchange of one gluon to ‘inform’ the spectator quark in the
pion about the scattering process. The ‘root mean square’ radius (rms) 1s determined

for small momentum transfer, its values are surprisingly close for nucleons (Simon
et al 1981) and pions {Amendolia et al 1984),

(r*)}? =0.862 £ 0.012 fm
(r*y12 = 0,657 4 0.012 fm.

In view of this fact it seems to be a rather crude approximation to treat the pion as a
point-like particle in chiral bag models or other models of the nucleon.

The original MIT model described the nucleon by three valence quarks confined
to the volume of a bag by the ‘pressure’ of the surrounding vacuum (Chodos et al
1974). It was soon realized that this model does not conserve the chirality. As long
as the forces at the surface do not depend on the spin of the quarks, the helicity
o - p will change when the quarks are reflected at the surface. The chirality may be
restored when the rigid surface is replaced by a pion cloud (Brown and Rho 1979,
Thomas 1984), in so-called o-models, by a ‘chiral combination’ of the pion and a
hypothetical sigma meson. The tensor forces appearing in such chiral bag models
may also lead to a deformation of the bag. Unfortunately, such an intrinsic
deformation cannot be observed in the case of the nucleon due to its smali spin (3).
There are, however, observable consequences of such models for transitions from

the nucleon to the A resonance with spin 5 and, at least in principle, for static

properties of that resonance.

We know from the theory of neutrinos that, a priori, chirality is only conserved
for massless particles. However, ocp or ocp-inspired theories have to describe
massive nucleons. Such particles may be obtained in a chirally invariant theory with
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massless ‘current’ quarks, as non-perturbative solutions. When such massive
nucleons are produced, there also appears a pion-like object at mass zero
(‘Goldstone boson’) in such a way that overall chirality remains conserved. While
the conservation of the (electric) charge may be derived as a consequence of a
conserved vector current J,, a conserved chirality is related to a vanishing
four-divergence of an axial current, 3*Js, = 0. The role of chiral symmetry and the
structure of pions and nucleons has recently been reviewed by Ericson and Weise
(1988).

If we allow for small but finite ‘current’ quark masses {(m,=3MeV, my=
9 MeV, see Gasser and Leutwyler 1982), the pion obtains its finite mass and, at the
same time, also the axial current is no longer conserved. Instead we obtain the pcac
relation,

a‘uj‘ip mfﬂ ijﬂ-’

i.e. the axial current would be conserved if the pion was stable (pion decay constant
f.—0), for vanishing pion mass (m,— 0, as would be the case for m,, m4—0) and
if there was no pion field (®"— 0).

By simply counting the masses of the quark—antiquark pair in the pion and the
three valence quarks in the proton, constituent quark models predict the mass ratio
i =% In a model with vanishing current quark masses, on the other hand, the pion
~appears as a Goldstone particle leading to u=0. The actial mass ratio pu = 3
indicates the hybrid nature of the physical pion between Goldstone boson and gq

state.

| In view of the basic importance of the pion for our understanding of nucleons
and nuclear forces, pion photoproduction has been and will be of considerabie
interest. Since this reaction is sensitive to the off-shell properties of the pion—
nucleon interaction, i.e. to the short-range behaviour of the pion wavefunction, it
may serve as a critical test of models of hadrons. Some of the contributions to this
process are shown in figure 1, in particular the Born terms with nucleon and pion
pole terms (singularity for m, — 0) and the seagull or Kroll-Ruderman term as well
as resonance contributions in the s-channel (nucleon resonances N* and A) and in
the t-channel (heavier mesons, e.g. @ and p).

Finally, the total cross section for photoabsorption on the proton is shown in
fipure 2. As a function of excitation energy, three main peaks are evident,
corresponding to magnetic dipole (M1), electric dipole (E1) and electric quadrupole
(E2). A systematic analysis of pion photoproduction experiments allows a deter-
mination of the various multipoles for the transition to each of these nucleon

N, ~ \ Y x . \
ke xhx P; H"“m, \‘H Y "*\\ ‘uﬁ

H}l:) -l-ﬁ/ﬁ{ +/}—ﬂ +rrrr} + + 5\'2 +
9 P -”JJ.

(a) (b} {ec) (d) (e} (f)

Figure 1. Diagrams contributing to pion photoproduction: (a) direct and (b) crossed

nucleon pole, {(c) pion pole, (d) contact term (in pseudovector coupling), (e) isobar
excitation, (f} ¢xchange of heavier mesons.
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resonances, thereby providing a large set of phenomenological quantities to be
compared with the theoretical models. Of particular interest are:

(i) the distribution of magnetism (M1) in the first resonance region of the
A(1232) or P, resonance. There is also a small (=1%) E2 admixture in this region
as a consequence of the bag deformation,

(it) the splitting of the E1 strength in the second resonance region into two
resonances, N(1520) or D5 and N(1535) or S,;;. The two states are predicted to
behave quite differently at large momentum transter. Moreover, the S,; state shows
a strange and as yet unexplained decay into 7 mesons (50%),

(iii) the concentration of the E2 strength in the third resonance region related to
a deformation or rotation of the nucleon,

(iv) the search for the breathing mode of the nucleon (Coulomb monopole
strength, CO) in the region of the Roper resonance N(1440). Obviously, this mode is
strongly influenced by the bag pressure and the compressibility of hadronic matter.
Since this level has only a small M1 strength, it gives only a small contribution for
real photons as in figure 2. S

In view of the low energy theorem (LET), threshold pion production on the
nucleon was considered to be well understood until a few years ago. In fact, low
energy pion production was used to study the structure of nuclei and possible
medium modifications of the elementary photoproduction operator. Therefore it
came as a big surprise when a reanalysis of the Saclay data (Mazzucato et al 1986)
showed that the experimental threshold amplitude E;, for the reaction y+p—
7’ + p was smaller than the prediction of LET by about a factor of five. The more
detailed Mainz data (Beck et al 1990) essentially confirm that strength is missing in
the threshold region and even add fo the puzzle by showing, in a somewhat
-model-dependent analysis, a rapid fluctuation of this amplitude over the first few

MeV above threshold.
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In the following section 2 we will outline the formalism for pion photo- and
electroproduction, including polarization degrees of freedom. The existing ex-
perimental data in the threshold region will be presented in section 3, and
confronted with the predictions of LET in section 4. Next we will briefly review the
existing models of pions and nucleons (seciion 5) and discuss higher order
corrections to LET as derived from such models (section 6). We conclude with a
short summary of the present status of threshold pion photoproduction in section 7.

2. Formalism

2 1. Kinematics

Since the electromagnetic interaction is governed by the fine structure constant
a = e2/47, the one-photon exchange approximation (see figure 3) has an accuracy
of about 1% for electron scattering from the proton. In this limit, the electron tests
the hadronic currents at a well defined energy and momentum transfer. The
4-momentum of the exchanged photon, g =(w,q)=k;—k;, is fixed by the
4-momenta of the incident and outgoing electrons, k; = (&, k;) and k; = (&, k),
respectively.

The independent variation of ¢ and w in an electron scattering experiment allows
‘the spatial distribution of the physical phenomena under investigation to be
explored. In this context it is common to use the positive quantity Q°>= —g° to
describe form factors and structure functions. Obviously, Q* vanishes for real
- photons.

The kinematics of the nucleon target is described by the 4-vector P, =(E;, F)) in
the initial state. In general we will refer to a typical two-arm experiment, 1.e. an
emitted pion with k& = (w,, k) is observed in coincidence with the scattered electron,
and the recoiling nucleon carries the momentum F; = (E;, F;). The inclusive
(one-arm) process may then be obtained by integrating and summing over the
hadronic momenta in all possible decay channels.

Due to momentum conservation there are three independent momenta at the
hadronic vertex, ¢.g. ¢, P; and k. Since both the target system and the detected
decay products are on-shell, P?,=m?, and k* =m7, there are three independent
scalars, which may be chosen to be the momentum transfer and two of the three

- £y Ky B¢

E, P £ K;
Figure 3. The kinematic variables for: (left) pion photoproduction and (right) a two-arm
electroproduction experiment in the one-photon exchange approximation. The spins of
the particles are s, , and §;  for the initial and final states of electrons and nucleons,
respectively. The photon has the polarization vector g#(A).
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Mandelstam variables,
(Q%, s =W?=(P,+q)’, t=(q — k)*, u= (P, — k)*}.

The threshold laboratory energy w; for the production of a particle with mass
m,, is obtained by evaluating the variable s in the laboratory and centre-of-mass (cm)
frames

th (mf + m:ﬂr)2 - m% + Q1

Wy = 1
- 2m, (1) _
Similarly, a resonance in the hadronic final state at a mass W occurs for
. WrPmi+Q°
Wi = . (2)

m;

2.2. Transition current and invariant amplitudes

Since the current operator has to reflect the negative parity of the pion, the general
structure of the transition current between initial and final nucleon states is gwen by

(de Baenst 1970)
J, = (A%, + BB, + Ck,)ys + (D¥, + EE, + Fk,)vsq (3)

where P =3(P,+ P;) and all 4-vectors are explicitly gauge invariant, ¥, =7y, —
(v - q/9°)qu- |

Evaluated between Dirac spinors, an equivalent form may be given in terms of
the spin operator and of the unit vectors k = kcy and § = §cp; of the independent
momenta in the cM frame, which defines the coLn amplitudes F; {Chew et al 1957)

7 =" (i5F, + (0 - B)(o X D + k(o - DF
+ik(a - B)F, +id(o - Q)F; +id( - F) @
p =" (i(o - k), +i(o - @) =L , )

with & = ¢ — (o - §)§ etc. In order to be consistent with previous notations for the
coLN amplitudes and their multipole decomposition, we have introduced a factor
4xW /m. In this way the current can be calculated directly from Feynman diagrams
in the notation of Bjorken and Drell {1964). The structure functions K, 55, F5 and
F; describes the transverse current while the longitudinal component is given by F
and F,. These structure functions depend on three variables, ¢.g. the square of the
4-momentum transfer Q¢ and on two of the Mandelstam variables (s and ¢ or,
alternatively, o, and ®$™). Due to the strong interaction in the N system, they
vhave complex values. Therefore, there are six absolute values and five relative

Table 2. Thresholds wi” for light meson production in MeV.

at e ¥ 7

p 15143 — 144.68  709.3
n  — 148.45  144.67 - 709.1
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phases that have to be determined in each kinematical situation. Since the number
of independent structure functions is connected with the spin degrees of freedom of
the interacting particles, a complete determination of the structure functions
requires polarization experiments. Instead of the CGIN amplitudes one often uses
helicity amplitudes (Amaldi et al 1979, Foster and Hughes 1983, Burkert 1986)
defined by transitions between eigenstates of the helicities of nucleon and photon.
Gauge invariance implies that the charge can be replaced by the_longitudinal
current or vice versa. This means that the coincidence cross section can be
expressed by the six structure functions describing the transition current in the case

of electroproduction, while there are only four invariants for photoproduction
(Amaldi et al 1979, Drechsel and Giannini 1989).

2.3. Multipole decomposition

Since the electromagnetic interaction is treated to first order in the coupling
constant, the complexity of the structure functions is completely due to the
pion—nucleon interaction (Fermi-Watson theorem). Therefore, each partial wave
component (&) of the structure functions may be written in the form (Watson 1954)

F*=¢e%*RY (6)

where RZ is a real function of the kinematical values and 8, = d,(w}") is the
phase shift for elastic #N scattering in that particular channel o= {lJI}. Including
‘spin—orbit forces and isospin degrees of freedom the pion—nucleon system 1s
described by X5;.1.2741, where X =S5, P, D, .. . denotes the orbital angular momen-
tum /=0, 1.2,. ... The total isospin of the system I can be 3 or 3, and J = |/ £ 3| is
~ the total spin. The phase shifts for the more important pion—nucleon states are
shown in figure 4. We note in particular the perfect resonance shape of the Pa,
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Figure 4. Pion-nucleon phaseshifts 6 as a function of kinetic energy TL in some
sclected channels X5, 274 (figure from Nozawa et al (1990)).
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phase shift corresponding to the A(1232) resonance of the nucleon (5 ==90° at
T%=180MeV). The steep rise of the P;; phase shift for TL— 500 MeV is an
indication of the Roper resonance N(1440). In addition there is some background
scattering due to interactions in the S, and S;,; states. All other phase shifts are very
small for kinetic energies T5;=500MeV. Finally we note that the phase shifts
become complex above the two-pion threshold, 8,— &, +in,.

The analysis requires an angular momentum decomposition in both initial and
final states. In the initial state the photon carries spin 1 and has orbital momentum [/
relative to the target nucleon. Its wavefunctions can be characterized by vector
spherical harmonics,

Yiu= 2, C(1A, Iv [ILM)8, Y, ()

the transverse polarizations A= +1 leading to electric and magnetic multipole
transitions EL. and ML, the longitudinal polarnzation A = 0 leading to longitudinal or
Couiomb transitions, CL.

The final state is described by an orbital momentum / of the pion relative to the
recoiling nucleon, with parity (—1)"* due to the intrinsic parity of the pion. The
total spin of the final state, J, has to equal the total spin of the initial state,

J=li4=|L£}]

Using parity arguments, we find for
cL,EL: (D) '=(-D"'>iL-1=1
ML: (-1 =(-1)">L=L

As an example, the lowest electromagnetic excitation modes and the corresponding
states of the pron—nucleon system are given in table 3. The first two columns denote
the famihar electromagnetic multipoles. In the next two columns we find the spin
and angular momentum of the 7N system. As an example, the A(1232) resonance
with /=3 and /=1 (i.e. positive parity, including the intrinsic parity of the pion!)
can be excited by both M1 and E2/C2 radiation. Its multipoles are denoted by M,
and E,,/L,,, respectively. Here the first index characterizes the orbital momentum,
/=1, and the second one, the ‘+’ sign, reminds us that spin and orbital momentum
of the nucleon are parallel (/ =/ 3). The excitation of the Roper, N{1440) with

=3, {=1 (the ‘breathing mode’ of the nucleon) can be reached by CO and M1

Table 3. Amplitudes for pion electroproduction {for notation see text).

Electromagnetic 7N system Pion production
L multipole J { rmultipole
0 C0 1/2 1 L,.
1 E1/C1 : 1/2 0 Eg /Ly,
3/2 2 E, [L,_
M1 1/2 1 M,
3/2 1 M,
2 E2/C2 3/2 i E /L,
5/2 3 Ey [Ly_
M2 3/2 2 M,_
5/2 2 M,
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radiation, the multipoles L, _ and M,_, respectively (J =I1—1). The longitudinal
multipoles are related to ‘scalar’ multipoles by @S, = |qlL;,.

From the nature of the partial waves it is apparent that only S waves remain near
threshold; for ke-y— 0, only the multipoles ¥, and L,, contribute. In the Siegert
limit gcpy— 0 (occasionally called ‘pseudothreshold’), the transverse electric and
longitudinal multipoles are related by gauge invariance,

E— 237+ 1)L, {(‘pseudothreshold’). (7)

The structure functions can be decomposed into a multipole series (Amaldi et al
1979) in terms of derivatives of the Legendre polynomials P,

F = Z {(IM,+ + E.!’+)P;+l + [(I + 1)M:~ + E!—]P;—l}

=0

E={(+ 1M, +IM,_ P!

i=1

= E [(Er — M )P+ _(Ef— + M, )Pi_,

{==1

. - (8)
k= E (Mf+ — B, — M- E;_)P,
i=2
F= 2 [0+ DL Piy—IL, P ]
f=0

by = Z [{L,- —{{+ 1)L, ]P;.

f==1

The Legendre polynomials are functions of the polar angle of the pion in the cM
. frame, ® = ©3™. The electric and magnetic multipoles, E,, and M, ;. respectively,
and the longitudinal multipoles L,, depend on both energy W and momentum

transfer Q% In the region up to about 500 MeV, the leading multipoles have been
tabulated by Berends et al (1967).

2.4. Isospin amplitudes

The mtial state is characterized by the target nucleon with isospin 3 coupling to the
electromagnetic current with the isospin structure ~(f° + [ “To), i.e. containing an
isoscalar and an isovector component. In the final state, the pion IS an isovector
particle (®). Assuming isospin conservation in the hadronic system, the interaction
in 1sospace has to be ~ ¢ - ®. The Pauli matrices appearing in the interaction of the

nucleon with the photon and pion may be arranged in the overall matrix element in
a symmetrical form

A= %A{_}[rct'a T{}] + A(+}6nr(} + A(U)raf (9)

where the first two terms are the commutator and anticommutator of T, with the
1sovector electromagnetic current while the last term corresponds to the isoscalar

current. In terms of the three isospin amplitudes, the four physical amplitudes are
obtained as

A(yp—nz™) = V2(AT + 4©) A(yn—>pa~) = —V2(AT) — A®)

10
A(yp—>pa’)y=A + 4@ A(yn—nx?) =4 — 4O 40
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H the resonances of the «N system are analysed in terms of isospin I, the three
amplitudes of equation (9) have to be combined as

A(BFZ} — A(+) _— A(—-) (jr — %)
A = A 424 (1=, (11)
AY | (I =1%).

Neglecting 1sospin symmetry breaking forces, all invariants and multipole
amplitudes of the preceding secticns can be decomposed into the isospin amplitudes
of equations (9) or (10). As an example, the dominant multipoles, the real part of
Ey, and the imaginary part of M., are shown n figure 5.

2.5. Cross sections and structure functions

Following the notation of Bjorken and Drell {1964), the differential cross section
for an exclusive process may be written

gmemum, &k, 1 &Fhk my PP
k; ¢ E; g Q) 2w, (2n) E;(2n)’
X | (B, K1 T#\ Py g *(kp| Ju KD (12)

where the phase space 1s evaluated 1n the laboratory frame and all kinematical
variables are defined as in figure 3.

We have assumed a purely electromagnetic process described by the currents of
the electron (j,) and the hadronic system (J,), i.e. weak neutral currents of the
structure ¥, (1—vys) due to the exchange of the Z° have been neglected. The
current of the electron 1s well defined 1n terms of Dirac spinors with normalization
iy = 1 and Dirac matrices v,.

The cross section has to be summed and averaged over the unobserved spin
degrees of freedom in the final and initial states, respectively. For simplicity we will
assume that the hadronic system is unpolarized in the initial state and that the
incident electron 1s described by a longitudinal polarization corresponding to
helicity eigenstates with » =6+ k; = £1. In both cases we will sum over all spin
observables in the final state, i.e. neglect the possibility of observing recoil

do

2m)' 8P, +q — k — Ff)

30

350

400

450

U iiiiiiiii I

200 250 300

w (MeVv)

Figure 5. The dominant multipoles of pion pllﬂtupruductinn. The data are from Pfeil
and Schwela (1972) (circles), and Berends and Donnachie (1975) (triangles).
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polarization. More general polarization degrees of freedom will be discussed in
section 2.6.

The square of the transition matrix elements of the currents in equation (12) may
be cast into the product of two rank-2 Lorentz tensors, 7,, and W,,. The lepton
tensor is casily evaluated,

Huv = 2 (ﬂ(kf: Sp)eyulks, s)Walky, se)ey,u(k;, s:))*

&
2

= 22 CEuK 3780 = 2044y + ihE40pq “KF) (13)

with m, the mass of the electron, K = i(k; -+ k), & the helicity of the incoming

ElECtI‘ﬂI} Luv the (symmetrical) metric tensor and Euvap B completely antisymmetri-
cal tensor (&y5,3 = 1). Gauge invariance is fulfilled since

TNy = Muvg " =0

The hadron tensor i1s defined as

Wio = (m/4aWY* (ol Ju ) (el e 1x) ™ (14)

where J* = (p, J) is the current operator of equations (4) and (5), and |x; ;) are the
Pauli spinors of the nucleon in the initial and final state, respectively. For
unpolarized nucleons this expression has to be averaged and summed over the initial
and final spin projection of the nucleon. The current has been normalized such that
the invariant matrix element for pion photoproduction (figure 1),

M= —igh/, (15)

may be evaluated acording to the conventional Feynman rules in the notation of
Bjorken and Drell (1964).

It 1s obvious that the electromagnetic current of the hadronic system should be
gauge invariant. As a consequence of approximations in treating the hadronic
system on the basis of a microscopical model, gauge invariance may be lost. It is
strongly recommended, therefore, to check the validity of current conservation by
an explicit comparison of charges and longitudinal currents.

Figure 6 shows the kinematics for a typical coincidence experiment. We have
defined our coordinate system as follows;

{é - E X Ez, Ey — (k, X kf);’ﬁln @,ﬂ, Ez = I}} (16)

where @E=c05'1(kf~kf) 1s the scattering angle. Using current conservation, all
timelike components of W,, can be replaced by spacelike ones (direction &, = §).

Y
Fa

reaction plane

scattering
plane

Figure 6. The kinematics for a typical coincidence

experiment, lcading to out-of-plane production of a
pion.
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The appearance of the various space directions in the tensor corresponds to the
absorption of partially polarized virtual photons. This fact can be described by a
degree of transverse polarization

e =(1+2¢*/Q*tan*0,)"’ (17)

where q and ©, are to be evaluated in the laboratory frame, and a degree of
longitudinal polarization |

gL =(Q% w%)e. (18)

Using equations (12)—(18), we can cast the differential cross section into the
following form (Amaldi ef al 1979, Donnachie and Shaw 1978)

a9, c;l; ia. :;ﬂ (19)
j;: B j;i T jgz + [igL(l + &)} %‘ZI“;[_L cos P, +¢ fgz cos 2D,
+ h[2e (1 &)]'"* dd{g: sin @, + h(1 — &%) %%Tf (20)
where
kL _ o

is the flux of the virtual photon field. In this expression we have introduced the
‘photon equivalent energy’, k, = (W?—m?)/2m;, the laboratory energy necessary
for a real photon to excite a hadronic system with cM energy W. The first two terms
within parentheses on the rus of equation (20) are referred to as the transverse (T)
and longitudinal (L) structure functions. They do not depend on the azimuthal angle
and may be decomposed into a multipole series in cos ©,. The third term and the
fifth term describe transverse—longitudinal interferences (TL and TL'), due to their
dependence on cos @, and sin @, they have to contain an explicit factor sin ©,, 1.e.
they vanish along the axis of momentum transfer. The same is true fﬂl‘ the fourth
term, a transverse—transverse interference (TT) proportional to sin® ©,,. The last
term (TT’) can only be observed by target or recoil polarization (see section 2.6).

Particularly in the case of multipole decompositions it is useful to express the
angular distribution of the emitted particle in the hadronic cM frame of the final
state. Therefore, equation (19) should be interpreted with the fiux factor in
laboratory coordinates, while the virtual photon cross sections have to be evaluated
in the cm frame. For the rest of this section we will only use M variables. The
transformation of the differential cross section to the laboratory frame is given in
appendix A.

The virtual photon cross sections may be expressed in terms of the hadronic
tensors W, by

do, |kl .+ W
dQﬂ: kEM ( 2 2 ~+ ELME e [281.,(1 + E)]LIrz Rﬂ m.z

Wm. — W;J*
2

where kSM = (m;/W)k,, is the ‘photon equivalent energy’ in the cm frame.

P +h[(2e (1 — )2 Im W,, + h(1 — £ Im my) (22)
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A comparison of equations (20) and (22) suggests to introduce the response
functions

RT = %(Wxx + wyy) RL — P‘sz
cos P Ry =—ReW, sin ®, R, =ImW,, (23)
c08 2@, R =3(W,, — W,;) Rir=ImW,.

The six response functions depend on three independent variables, e.g.
R =R(Q?% w,,©,). An experimental separation requires a variation of the
polarization of both virtual photon, €, and electron, h, as well as a measurement
for at least one non-coplanar angle ® = ®_,. The appearance of this angle in the
combinations cos @, sin ® and cos 2@ is related to the fact that the virtual photon
carries a spin of one unit of angular momentum.

The current may be decomposed into the CGLN amplitudes and further expanded
into partial waves. The resulting expressions for the response functions are given in
the appendices B, C and D.

While the coincidence cross section contains information on the relative phases
of the multipoles, the inclusive cross section is an incoherent sum of the multipoles,

O, = Jr + ELgL (24)
 with
dﬂ'T
= — €2,
17 | 40,
ki < '
<2 RS P+ DB+ M)+ M+ 1Brs, )
(25)
do kl <
o= | = dQ, =4 'cL > (1 + 1P Ll + [ 1) (26)
dg k}-‘ =0

2.6. Polarization degrees of freedom

Polarization observables promise to become an interesting new field in pion
electroproduction. The obvious advantage of such studies is the fact that many of
these observables contain interference terms, making it possible to determine small,
but important amplitudes in a unique way. The new generation of high duty factor,
high intensity electron accelerators wili provide the experimental capabilities for
‘such investigations. Such measurements will be forthcoming in the 1 GeV range at
the accelerators at Mainz (MAMI), NIKHEF-K (AmPS) and MIT/Bates and,
within a few years, also at the 4-6 GeV CEBAF project.

The general formalism for coincidence and polarization experiments has been
developed by Donnelly and Raskin (1986) and Raskin and Donnelly (1989).
Recently, this formalism has been applied to the reaction p(&, e'Pp)n”, in order to
study the structure of nucleon resonances (Lourie 1990a,b). Due to the polarization
of the recoiling proton, the differential cross section contains a total of 18 structure
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functions,

do, |k

dg =;!CI~|.{ {(RF+R1R )+ l"r-':l_.(Rl_.—i"P R )
Y

+ [2e.(1 + &)]" (Rt + P.R%) cos ® + (PRY. + PR sin @]
+ g[(Rrr + P.R%y) cos 2@ + (PR + PR%r) sin 2®]
+ h[2e (1 — €)]"*[(Ryor + P, RY) sin @ + (PR + PRy cos @]
+h(1 - &%) *(PR 1 + PRTT)}. | (27)

In addition to &, the helicity of the electron, there appear the projections of the
proton spin unto the three axes # = § X k/sin ®, (normal to the reaction _plane), !
(along the proton momentum) and #=7 X [ For example, P,=i-8z is the
projection of the spin vector (in the proton rest frame!) unto the axis normal to the
reaction plane.

The cross section for reactions induced by real photons follows if we (i) replace
I' by the flux factor for real photons, (ii) drop all longitudinal currents, and (iii)
replace k5™ by the energy of the real photon in the cMm frame. We find

do k|

q0 7 l{(RT-i-PR 2) + [ (R + P,RYy) cos 2¢ — (PR + P,R%r) sin 2¢]

+ PRy + PR} (28)

where It is the degree of linear polarization of the real photon and ¢ the angle of
the polarization vector relative to the reaction plane, and Il: is the degree of
circular polarization. For example, for completely linearly polarized photons with
polarization vector normal to the production plane, IT. =1, ¢ = 3 and I1. = 0, while
right (left)-circularly polarized photons have I+ =0 and Il = +1(~1).

In experiments with polarization degree of freedom it is common to define the
following observables (Moorhouse 1978, Walker 1969):
(i) the polarized photon asymmetry

2(®)=~-Ry/Ry (29a)
(i1) the polarized target asymmetry |

T(®) = Ry(n)/ Ry = ~Ryr(n;)/ Ry (29b)
(iii) the recoil nucleon polarization

P(©) = R(ns)/ Ry = —Ryr(m)/ Ry | (29¢)

where n; and n, refers to the polarnzation of the nucleon in the initial and final state,
see appendix B.

In addition there are four observables for polarization of both beam and target,
E(©®) = —Rrr(l:)/R+ F(©) = Rrr(4)/ Ry
G(®) = —R{(l)/ Ry H(©) = Rrr(4)/ R

The corresponding four observables for polarization of beam and recoil nucleon are
obtained by replacing /;, ;,— [, ¢ in equation (29d).

Finally one can measure four observables for polarization of target and recoil

nucleon. As shown by Barker ef al (1975) a complete experiment requires, besides

(29d)
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Figure 7. The dependence of the response functions R!. . and R!, on the quadrupole
amplitude L, /E,, in the region of the A(1232). The full and chain curves show the
results with and without the L, /E, . multipole (for details see Lourie 1990).

the differential cross section and the three single polarization observables 2, T and
P, only five out of 12 double polarization observabies.

Even an in-plane experiment allows to separate the six response functions Ky,
Rir, RY .. RY ., Ry, and R%.. In the A resonance region, the functions Rf; ., RTp
and Ry, are of particular importance, because they contain the interference term

* M, and, to some degree, contributions of the non-resonant longitudinal
amplitudes I,_ and Lg,. Therefore, the experiment allows to separate the
resonance contribution L., (‘A deformation’} from the non-resonant background.

 The strength of such background contributions can also be determined from R7.

Being the imaginary part of an interference it vanishes for an isolated resonance, 1.e.
it contributes only in situations of overlapping resonances or interference terms
between a resonance with a background amplitude.

Figure 7 shows the dependence of the response functions R7 . and R on the
L,./E;, amplitudes. It is clearly seen that the two latter ones are extremely
sensitive to the electric quadrupole amplitude (‘A deformation’).

3. Experimental data

As will be shown in section 4, the low energy theorem (LET) predicts that the Ey,
amplitude is strongly suppressed for neutral pions. This can aiso be seen in figure 8
by comparing the total cross sections for charged and neutral pion production.
While the M., resonance at 300 MeV is clearly pronounced in all three channels, a
strong background of £, is visible in the case of charged pions.

- The theoretical predictions of LeT for the £y, amplitude are shown 1n table 4
together with some model calculations and the experimental data. While the
experimental numbers for &* production have been smoothly extrapolated to
threshold, the analysis of two recent experiments (Mazzucato et al 1986, Beck et al
1990) has shown that this is not possible in the case of (y, ") off the proton. In the
energy range of about 10 MeV above threshold the E,, amplitude varies between
—1.4 X 10~3/m,, and 0. This is the reason why there is no entry in table 4. In previous
publications on this subject numbers of —0.5 £0.3 (Mazzucato ef al 1986) and
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Figure 8. The total cross section for pion photoproduction as function of photon energy
w. (Data from Menze et al (1977) and Bagheri et al (1988), compared to calculations of

Nozawa ef al (1990).)

~0.35+0.1 (Beck 1989) have been quoted. However, these numbers have been
obtained in a highly debated model-dependent work. Therefore, they cannot be
compared with the theoretical predictions of table 4. Further details on the model
dependent analysis are discussed together with final state interactions in section 6.3,

As may be seen in figure 9, the threshold cross section does not show the strong
S-wave contributions predicted by the theory. Instead the data essentially follow the
energy dependence given by the Ps; resonance. Similarly there is little indication of
the expected ‘cusp effect’ in the cross section at w = 151.4 Mev, where the threshold
for the competing not™ channel opens.

‘The suppression of the E,, amplitude can also be seen by inspecting the angular
distribution shown in figure 10 for a photon energy w =149.1 MeV. While LET
predicts a cross section peaked in the backward region due to £y, /M, . interference,
the experimental data are much lower and nearly symmetrical about 90° due to the
lack of Ey, strength.

In the Mainz experiment total cross sections have been measured from threshold
up to 156 MeV, and five angular distributions have been taken at 146.8, 149.1,
151.4, 153.7 and 156.1 MeV, one of them is shown in figure 10. However, it is not
possible to extract the multipole amplitudes out of these data without further
assumptions. In a fit of only the differential cross sections Beck ef al (1990) have
obtained two solutions for the £, amplitude, giving an ambiguity at the lowest ftwo
energies. We have analysed the differential and total cross sections in a combined
way under the following assumptions:

(i) only multipoles up to I =1 contnibute (i.e. Ey,, E, ., M., M,_),

Table 4. Pion photoproduction amplitude E,, in units of 107°/m,. LET, low energy
theorem; pPv, Born terms in pseudovector coupling; pv+, Pv plus vector meson

exchange @, p and u-channel A resonance; COM, constituent quark model (Drechsel
and Tiator 1984). Experimental data from Adamovitch (1976).

Channel LET PV PY-+ COoM Experiment
yp—>na” 27.5 27.7 27.7 29.0 28.61+0.2
YR—> paT~ —32.0 —31.9 —31.6 -33.3 -31.5+ 1.0
yp— pa’ —2.4 —2.5 -2.3 -2.7

yn—>na’ 0.4 0.4 0.4 0.4
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Figure 9. Total cross section for the rcaction v+ p— #®+p as function of photon
energy. Mainz data (1) according to Beck et al (1990), Saclay data (O) of Mazzucato et
al (1986). The full curve is a fit of the experimental data while the broken curve is
obtained with a constant E,, of —2.5x 1072/m_ and the same p-wave multipoles as for
the full curve.

(ii) the energy dependence of the P-wave multipoles follows the theoretical
predictions and 1s proportional to the product of photon and pion momenta (i.e.
E.,=e gk x107%/m), M,,, M,_ analogous),

(iii) the E,, amplitude is fitted at each of the five differential cross sections,

interpolations are performed to other energies. |
| In this way we have obtained a ¥? fit of all the data with eight parameters, five
values of E,, and three slope parameters for P-waves. In figure 11 we show the
result of our fit for £;, and a combination of P-wave multipoles M1= M, +
3E,,—M,_. Qur fit gives a unique solution for the multipoles and is in good
agreement with solution I of Beck er al (1990) except for the lowest data point of
E,., where our result 1s close to solution II.

Among the P-wave multipoles only the M,, has been measured with a
satisfactory precision, M,, = (8.0 £ 0.1)gk X 10°/m,. The E,, and M,_ multipoles
still have a sizeabie statistical uncertainty and should be better determined in future
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Figure 10. Angular distribution do/dQ for y+p—o+p at fixed photon energy
@ = 149.1 MeV. The broken and full curves are obtained with multipoles as in figure 9.
The data are from Beck et af (1990).
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Figure 11, Result of our fit to the Mainz data. The open circles show the values of the
E,, amplitude and the prediction of LET is drawn as a constant over the energy range.
The P-wave multipoles are given in the combination M1 =M, +3E,, — M,_ with an
error band.

Table 5. Multipole analysis of pion photoproduction at threshold. a, Adamovich {1976);
b, Berends and Weaver (1971) at @ =165 MeV; c, Berends and Weaver (1971) at
180 MeV; d, Pfeil and Schwela (1972) at 180 MeV; ¢, Crawford and Morton (1983) at
167 MeV; f, our fit to the data of Beck ef af (1990). Our fit of the E,, amplitude as
function of @ is —14+£0.1 (146.8MeV), -0.81+0.1 (149.1 MeV), —-0.610.1
(151.4 MeV), 0+£0.15 (153.7MeV) and —0.3 % 0.2 (156.1 MeV). The extrapolation to
neutral pion threshold is —2.2. -

Eow  Ei. M, M,_
(1077m7)y (107%qkm3) (107%gkm?) (10 gk m_3) Reference
p(y, 7 )n 28.6+0.2 a
26.5 4.8 -13.5 5.5 b
24.0 - 4.3 -11.1 3.3 ¢
25.2 3.3 ~7.7 4.2 d
24.9 4.3 ~9.7 5.3 e
a(y,x )p —31.5+10 a
~29.2 ~3.1 8.4 —6.0 d
-29.1 -3.9 10.0 —6.4 e
p(y, a)p —-2.1 —0.27 9.6 -3.9 b
~2.2 ~0.75 8.5 ~3.2 c
-1.9 +0.12 8.6 —-0.9 d
~-1.8 - —0.21 6.6 ~2.5 e
—0.50 8.0 —2.3 f
n(y, z%)n 1.0 0.13 7.8 0.5 d

1.1 —0.21 5.9 —1.4 €
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experiments with polarization degrees of freedom. A summary of the present
multipole analysis is shown in table 5. Similar results for £, have been obtained by
two recent analyses of the total cross section data (Bernstein and Holstein 1991,
Bergstrom 1991).

Electroproduction between threshold and the first resonance region has been
- studied in the 70s at Frascati (Amaldi ef a/ 1970), DESY (Brauel ef al 1974), NINA
(Botterill et al 1976), Saclay (Bardin et al 1977) and Bonn (Breuker et al 1978). In
the virtual photon cross section (equation (20)) only a few structure functions have
been separated, e.g. o and opp by use of the azimuthal dependence on @,
(Breuker et al 1978) or op and o at &, =0° by a Rosenbluth plot. A direct
determination of individual multipoles, however, has not yet been achieved in the
near threshold region. The main interest in the experiments with charged pions has
been to determine the nucleon axial form factor (., from the transverse and the
induced pseudoscalar Gy from the longitudinal response, the latter being related to
the pion form factor F, by pole dominance. As will be discussed at the end of
section 4.2, these form factors are not fully independent but related by the
requirement of gauge invariance. Therefore the extraction of these form factors is
model dependent. As an example, Bardin ef al (1977) determine the pion radius to
be r, =0.74%315fm as compared to the direct measurement of Amendolia ef al

(1984) who obtain 0.66 £ 0.01 fm.

4. Low energy theorems

4.1. Current algebra

Low energy theorems (LET) have been a very powerful tool to determine the
threshold amplitudes for reactions involving photons and pions. Covariance, gauge
invariance and the (partial} conservation of the axial current (pcac) allow these
amplitudes to be expressed in the low energy limit in terms of the global properties
- of the hadrons, such as their masses, magnetic moments and coupling constants. As
an exampile the Thomson limit for the scattering of photons at threshold (energy
w—0) is

do/dQ— 5(a/m)”

where e = V4sra and m are the total charge and mass of the struck object. The first
contributions depending on the internal structure are O(w?) and proportional to the

electric polarizability and magnetic susceptibility of the target (Low 1954, Gell-
Mann and Goldberger 1954).

While these theorems are exact in the case of photons, their application to pions
involves an expansion about the unphysical ‘soft-pion limit” of massless pions, as a

power series in 4 =m,/my. Weinberg (1966) and Tomozawa (1966) were able to
explain the surprisingly small S-wave phase shifts for the scattering of low energy
pions within the framework of LET.

Figure 12 shows some diagrams contributing to pion photoproduction. As for
any radiative process, LET assert that the threshold behaviour is determined by the
Born terms (figure 12 (a)—(d)).

The leading order term, the ‘Kroll-Ruderman’ amplitude (Kroll and Ruderman
1954) of figure 12(d), is fixed by the gauge invariance of the electromagnetic current.
The higher order terms in the mass ratio g are determined by chiral invariance, i.e.
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Figure 12. Diagrams contributing to pion photoproduction: (a) direct, (b) crossed
nucleon pole term, (c¢) pion pole, (d) Kroll-Ruderman term, (e) and (f) isobar
excitation, (g) triangle anomaly {photon pole, vector meson exchangﬂ) (h) square
anomaly, (i) rescattering.

by the partial conservation of the axial current (pcac). Typical model-dependent
corrections are of relative order u* (Fubini et al 1965, de Baenst 1970).

Ultimately, the vector and axial currents of the hadronic system can be expressed
in terms of the quark degrees of freedom appearing in the ocp Lagrangian. On the
usual energy scale of hadrons, the masses of the three hghtest quarks (u, d, s) can be
neglected. In this limit, we obtain eight conserved vector and axial currents,

Jo =34yv,.Aq (30)
S = 19V Y5A g (31)

The Gell-Mann matrices A, refer to the flavours of the three lightest quarks. Due to
the symmetry-breaking mass matrix

m, 0 0
M=% 0 myq O | (32)
9 0 mg
the currents of equations (30) and (31) have the divergence
81re = iG[M, $4°}q (33)
M5, =g {M, 31"} vsq. (34)
We note that the electromagnetic current,
Jom = e(J3 + V375) (35)

is conserved, because it commutes with the diagonal mass matrix.
Neglecting the masses, we obtain 16 conserved charges,

0" = | dxrg) - ' (36)

03 = | dxrx). (37)

As postulated first by Gell-Mann, the equal-time commutators (Erc) of these
charges fulfil the SU(3) X SU(3) algebra (Adler and Dashen 1968)

[Q°, @°F=if"" Q" (05, Q5] =if Q" [Q°%, Q3] = if Q5. (38)
Often we also assume such relations for commutators of charges and currents, i.e.

[Q°, Jo()l =if*Ji(x)  etc. (39)



Threshold pion pkﬂmpmducﬁﬂn on nucleons - 469

For completeness we note that there is an additional conserved vector current
related to the unitary transformation g — exp(ia’)q. The corresponding axial current
is not conserved, its divergence is proportional to a product of gluon fieid tensors
(‘U(1) problem’). These two singlet currents are usually obtained from the octet
currents, equations (30) and (31), by introducing a diagonal matrix A0 =3z,

Due to the non-linearity of ocp perturbative solutions are only justified in a high
energy phase of quarks and gluons (perturbative Qcp, asymptotic freedom). In this
regime quarks and gluons propagate freely over (relatively!) large distances. In the
realm of low-energy physics, however, the coupling is strong. The physical ground
state has a complex structure and the effective degrees of freedom are carried by
hadrons as realizations of quarks and gluons in this phase.

At the same time when quark pairs appear in the vacuum (quantum numbers:
scalar—isoscalar), the non-linearities also lead to a strong attraction for quark pairs
with the quantum numbers of the pion (pseudoscalar—isovector). This leads to the
existence of massless pions (‘Goldstone bosons’). The appearance of these
Goldstone pions compensates the effects of the massive quarks and guarantees the
conservation of the axial current even in the case of finite effective quark (and/or
nucleon) masses.

Physical pions decay by weak interactions. Denoting the pion wavefunction with
®*, where a is an isospin index, the axial current of the pion coupling to the weak
interactions is

gu(-x )=fx Op o . ' (40)

with £, =92.6 £ 0.2 MeV (Coon and Scadron 1990} describing the experimentally
observed lifetime of charged pions.

- If we allow for finite ‘current’ quark masses m, and m,, also the Goldstone

bosons obtain a finite mass m,, according to the relation (Gell-Mann et al 1968).

mif?=—(m,+my){qq)- | (41)

The experimental numbers on the LHS of this equation are described quite nicely by
the commonly accepted values m,=S5MeV, my;=9MeV and (jq) = — (225 MeV)’
for the quark condensate (Gasser and Leutwyler 1982).

Since we have now introduced finite quark masses, chiral symmetry is broken.
However, it is broken at the scale of the small current quark masses of a few MeV,
not at the scale of the much larger effective masses.

4.2. Acw derivation of LET

While the applications of LET to pion photoproduction have followed a somewhat
different path (Fubini er al 1965), we will now derive these theorems by a
field-theoretical approach (Adler and Gilman 1966, Weisberger 1967).

To lowest order 1n the electromagnetic current, the S-matrix element for the
reaction y(qg) + N(p)— a*(k)+ N(p’) is |

S =—i J d*x e e (gANY2(N' | Jo™(x) |N) (42)

where £" 1s the polarization vector of the electromagnetic field, N, = (27)™° (2q,) ™"
its normalization, and the hadronic systems are described by exact solutions of the
Lagrangian with appropriate ‘in” and ‘out’ boundary conditions.
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On a phenomenological level, in a model with nucleons and pions, we have

=T +IT+ (43)
The current operators of free nucleons and pions are
-1+ Voo
JI: = Y : Yo + o — (’P(ﬁ‘s + .vau)ﬂva) (44)
2 2m
Ji=(® X 3,®); = £5,,0°3, 7. (45)

In particular we note that the nucleon current includes the familiar Pauli term.
The derivative in this term can be removed, 3"—ig", by a partial differentiation in
equation (42). While the first two currents on the rus of equation (43) are
compietely determined by the well known properties (Lagrangian) of free nucleons
and pions, the interaction current is strongly model dependent. In the Weinberg
model, e.g. there appear many additional terms containing both nucleon and pion
field operators. |

Equation (42) can be simplified using translation invariance

(N'7| J,(x) INY = exp[—i(p — p' — k)x]{N'7J,(0) |N)
and integrating over the space variable | |
S=-ia)' 8" (qg +p —p' — k)Ne"(N'x* J™(0) |N). (46)

Next we ‘apply the reduction technique of Lehmann et al (1955). Assuming a local
field theory and microcausality, the § matrix can be cast into the form

S = 2m)* 8 +p —p' ~ IONVINY? | d'x(—K* + m2)
X e®(N’| T(®%(x)e - J*™(0)) |N) (47)

where ®“(x) is the local pion field, an exact solution of the hadronic Lagrangian,
and T the time-ordering operator. .

Redefining the nucleon states such that the normalization factors Ny =
(27x)*(E + m)/2m appear explicitly, the integral in equation (47) is exactly the
invariant amplitude X in the notation of Bjorken and Drell (1964). It would be
straightforward to calculate this amplitude within the framework of a specific
Lagrangian, e.g. pseudoscalar 7N coupling, by evaluating ‘all Feynman graphs’ with
the familiar rules for vertices and propagators. However, we cannot be assured that
this result makes any sense because of the large value of the coupling constant.

The physical assumption to bring us closer to a reliable numerical prediction is
the pcac hypothesis,

M5y = —fum o ®* (48)

relating the divergence of the axial current to the local pion field. The hypothesis is,
more precisely, that all higer order terms (heavier mesons, @ terms in the
Weinberg model etc) in this equation may be neglected at low energies. This
enables us to rewrite the invariant amplitude as

M = k;;’; z f d*x e* (N'| T(8"T,(x)& - J*™(0)) |N). (49)
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Eliminating the differential operator by a partial integration we obtain two
contributions, the first by differentiation on the plane wave, the second by
differentiation on the step functions ©(x,) and &(—x,) implicitly contained in the
time ordering operator,

g = ZK E 1 [t e (o 0xa) (N U5, & - IO 1N
fxmy

+ikY(N'] T (%), - J*™(0)) |N}}. (50)

- The first term in this equation contains the equal-time commutator (Erc) of the axial

charge and the electromagnetic current. Due to Gell-Mann’s hypothesis on ETcs (see
 equations (38) and (39)) |

' f Ex[75(6), T (O)]ymo = i€EaapL (51)

and this term will yield the familiar Kroll-Ruderman term, dominating the
threshold production of charged pions but vanishing for neutral pions.

Unfortunately, there is still a flaw in equation (50). For physical pions k*— m?,
and the matrix element would vanish if it were not about the pion pole term hidden
in the time-ordered product. This problem is usually circumvented, more or less
carefully, by evaluating the rus of the equation in the ‘soft-pion limit’, k°->0, as a
power series in m=. Instead, we follow a procedure suggested by Weisberger (1967)
_to first evaluate the contribution of the axial current of the pion. Similar to the case
of the electromagnetic current, the axial current of the hadronic system should have
the (phenomenological) form

JE, =JN04 £ 3, ¥+ JMa=f 3 ¥+ ]2, (52)

Inserting this expression into equation (50) and integrating by parts once more, we
find

f:rrmizt 4 IAx i o cm
wk2+m2m=J,de {(5(.13[])(”'.[;5”,5'] ]|N>

—ic. fr O(xo)(N'| [@%, & - J] N} +ik"(N'| T(JS,£ - J™) [N)
+ KNI T(@% - J™) [N)}. (53)

According to equation (49) we can identify the last term on the ruHs with the
invariant amplitude % multiplied by f,k*/(—k* 4+ m2). If we combine this term with
the LHs of the equation, the pole structure vanishes. The threshoid amplitude in the
cM frame is simply obtained by k— (m,, 0), and our final result is

%=%fd4x e“* {8 (xo)(N'| [/5, € - J"] IN)
) — 10, f0(x0) (N'| [@%, € - J*"HN) +ik*(N'| T(J$,e - J*") [N} }.  (54)

As has been stated before, the first term on the rus is the Kroll-Ruderman term.
The time-ordered product yields, to lowest order, the s- and u-channel Born terms
in pseudovector (pv) AN coupling. According to Adler and Dothan (1966) the
higher order terms of the perturbation series contribute only to higher order in m,,
since the Born terms already fulfil the assumptions of LET. The second term gives

rise to the ¢-channel (pion) pole term. At threshold it only contributes to pion
electroproduction.
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In stating that equation (54) is equivalent to pv coupling, we have taéitly assumed
that

I8 = 397uysT°Y. (55)
The matrix element of the full axial current, equation (52) between nucieon states
has the structure |
' T - T” GP = ! T"
PI5P) = Galty VuYs ity + 2 lip(p’ = P),¥s o U (56)
with the renormalized axial coupling constant g, = G(0) = 1.261 (Holstein 1990)

and the induced pseudoscalar G,. Assuming pion pole dominance the two form
factors are related by

2

Gol) =~ Gt (57

mZ—t

where = (g —k)*=(p’' —p)>. Since the pion cloud is related to the pion source
function,

(O+ mo)P* = —igyyst*y (58)

the axial coupling constant g, is connected with the pion decay constant f, by the
~ Goldberger—Treiman relation (1958),
§a_ 8 2f

£ o m = - (59)

Using equation (51) the commutator in the first term can be expressed by the axial
current, equation (56). Assuming that the interaction currents in equation (43)
commute with the pion field and by using the pcac hypothesis, also the second
term can be related to the axial current. Both terms together lead to the amplitude

e [T, To] . G £k 3
EIR{IJ — Zfﬂ 5 0 Hp*{GA)é - 5}5 £ (q — k) “” mfr (2mGA + 2_1?: GP)}YE“P- (60)
With equations (57) and (59) we obtain
(1) _ f [f{r, Ir'“] Gﬁ(t) _ ,{ Zm (Ve — }
U Emn 2 Ga(0) ip) £+ {~m? [ - 2k —q)] tysus. (61)

While the result is essentially model independent, the time-ordered product in

equation (54) can only be expressed as a perturbation series. Evaluated to leading
order it gives the nucleon pole terms, |

2 _ & [T, Tl Galk?) . [, o/ 2e-p+qf 2e-p' — ¢
= e 2 Ga0) i P10 ’%+’”(2q-p+q2+zq-p'~*q1))

§g(2e-p+e-q 2e-p'—¢-q
+F"(q2)(— +-( + ; )
i F+3 29-p+q>  2q-p' —q°

+ 2k ) (— )} frsus

+
2q-p+q° 2q-p'—q*

ef Ga(k?) _ { 2e-p+qf 2e-p — {4
+ L (808y + 1,0 L rg? ( _ )
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2e-pt+e-q 2e-p'—€-q
+F£(q2)(g( 2 2 - o 2)
q:-p+q 29 -p'— ¢

vt~ (o 2 T 3o a))) e (62)

In deriving this result we have introduced the finite structure of the nucleon by
multiplying the currents of equations (44) and (55) by the appropriate form factors
F, E and G4, respectively.

Replacing € by g in equations (61) and (62) gives the 4-divergence of the
electromagnetic current, D =ig - J°7, with

f [%a To] Gal(g — k)*) — Galk*)Fi(q°)
m, 2 Ga(0) ‘

Obviously, gauge invariance is violated if the contact terms and the nucieon pole
terms are evaluated with phenomenoiogical form factors. The reason 1s that these
terms are treated to different order of the perturbation theory, i.e. exactly for the
contact terms and to first order in the nucleon pole terms. In the case of threshold
photoproduction, the arguments of the form factors are of order m>, and the most
consistent approach is to neglect the form factors completely. The inconsistency is
more severe for electroproduction, even in the soft-pion limit (k* = 0). According to
equation (63) gauge invariance would require that the axial radius r, is equal to the
. isovector Dirac radius rj. The experimental numbers are r,=0.65 1+ 0.07im and
ri=0.78 + 0.01 fm. A direct calculation of the pion pole term, on the other hand,
gives a contribution proportional to F,(g°) with a radius r, = 0.66 + 0.01 fm, very
- close to the axial radius. At large momentum transfer, however, the pion 1s
" described by a monopole form while the nucleon form factors follow a dipole fit
(Brodsky and Chertok 1976).

The photoproduction amplitude at threshold (k=4&“=0) can be evaluated
from equations {61) and (62) as a power series in u = m,/my. Both form factors and
higher order terms only contribute to relative O(u*) and will be neglected. Only the
E,. multipole of equation (8) and, hence, only the amplitude F; of equation (4)
contribute to the current. Further using cquation (9), the non-vanishing isospin
amplitudes at threshold are given by

E(+0 = e [ 1 A4(=+,0)
N .

dam, 1 + 1

D=—e

ﬁ'p: k?ﬁ”p (63)

with
AT =1+ 0(u?
A(+,ﬂ) — _%” + %#lﬂg,ﬁ} 4 O(Iu:i)

where u$Y'=1(p, L u.)= (0~;44,2.35) are the isoscalar and isovector magnetic
moments of the nucleon. The amplitude 4¢) is given by the first commutator in

equation (54). It can be obtained from the seaguli term of a pseudovector
Lagrangian (figure 12(d)). The term of order p in the amplitudes A" originates
from the Dirac current in equation (62) and corresponds to antinucleons in the
intermediate state, while the term of order u* is a contribution from the Pauli+Dirac
current with intermediate nucleon states (figure 12(a) and (b)). The pion pole term

(figure 12(c)) leads to a purely longitudinal current at threshold and the residual
diagrams of figure 12 are of higher order in pu.

(64)
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Suppose now that there is an additional induced pseudoscalar at the level of the
current operator, equation {55):

. T g _
-’rf:_u."* w?pYS? L% “ﬁl 3;;(11)'1’5—2“ ‘P)- (65)

Similar to the case of the Pauli coupling for the electromagnetic current
operator in equation (44), we have assumed that there is a derivative coupling at the
operator level. While parts of the magnetic moments are of pionic origin and have
to be renormalized to appropriate order, it seems obvious that these moments
cannot be fully explained by pionic degrees of freedom. In a similar way the
additional pseudoscalar in equation (65) indicates the possibility that a {probably
small) part of the total induced pseudoscalar G, could be of non-pionic origin.

The immediate consequence of the induced pseudoscalar in equation (65) is the
appearance of a further derivative under the time ordering operator in equation
(54). Another partial integration leads to an additional commutator resembling very
closely the structure of the ‘sigma term’ discussed in section 4.3. If we choose, e.g.,
g,= —1, the Goldberger-Treiman relation is changed only at the per cent level.
This small change 15 sufficient, however, to cancel the terms of order m, and to
suppress E,, for z° production on the proton.

The current of equation (65) could be possibly realized in an extended pv model
with an interaction Lagrangian

Lint n{n (w,},#},ﬁrw ,__g_’:;l 3”(@?}51}'(1))) . oHeP, | (66)

It is obvious that minimal coupling of the electromagnetic current wili also lead to
an additional contact term, as required by the gauge invariance of the theory.

Another interesting aspect of the model is that it has no effect on the reaction
v+n— n’+n, quite contrary to the model of Furlan et al (see section 4. 3).
Therefore, the leading contribution for the neutron will still arise from its magnetic
moment, in accordance with the general spirit of LET.

4.3. rpv derivation of LET

Following the work of Furlan et al (1972, 1974) we introduce the operator
i .
0% = Q¢ +—0f - (67)

having the matrix elements

<-”Tﬁ| Qs |U) ={
(0| Qs |-ﬂ’ﬁ) = 2(0l Q5 |~"—'ﬁ> = _Zifnmn(23)353(k) E“im’rrﬂsaﬁ-

Using the pcac relation (48) and Gauss’s law, the time derivative of the axial charge
is related to the pion wavefunction, and equation (54) may be cast into the form

(68)

(N'|[Q8 - I IN) = I — i, f dt é(N'| T(Qge - J*™) |N) — Hor. (69)
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Next, Furlan et al evaluate the commutator of Qg5 and J3", first by a direct
calculation and second by saturating the commutator w1th a complete set of
intermediate states (&, N, ZN, ... ).

(bI[Q%, - 3] la) =, ({0] Q% | (b| &-J°" |a)
—(ble-J" jam®) (| Q5.10) )
+ % ((b] Q5LIN){N|g-J"|a) —cr)

+ 2 (b1 Qsin)(nle-T"™|a) - cm). (70)
n¥EN_ T

In the first sum on the rRHs we find the matrix elements of the electromagnetic
current for both photoproduction (a— b ™) and radiative capture (azs*— b). Due
to the definition of @35, equation {68), the pionic matrix element accompanying
radiative capture vanishes, and is straightforward to show that the insertion of
one-pion states leads directly to the photoproduction matrix elements [, on the
rRHS of equation (69). Similarly the insertion of one-nucleon states (positive and

negative energy states!) results in the second term on the rus of that equation.
Up to this point there 1s no difference between the canonical derivation of LET,
section 4.2, and the work of Furlan ef af. The discrepancies appear, however, if the
symmetry breaking 1s expressed at the microscopical level by the quark mass matrix,

03 =ilH, 03] = | d'r &5, =i | d'ripprs(M, 347 v )
The commutator of this quantity with the electromagnetic current is

[Q?: P = *Ew3ﬁ‘ﬁpf@r “#’)Yﬁ%fﬁwp (72)

[05,7™] = im(a3 + 3T0) EsWr Okiry (73)

where m,=3{m,+ m,) is the average light quark mass and .., ¥, are quark
spinors. While the rH$ of equation (72) may still be related to the pion source
function leading to the pion pole contribution of equation (6{)), the tensor form
factor o, of equation (73) does not appear in the field-theoretical derivation. In
chiral models of pions and nucleons as well as in the o-model, Q5 is proportional to
the pion field and therefore the commutator, equation (73), vanishes (Kamatl 1991,
Bernstein and Holstein 1991). In analogy to pion—nucleon scattering, the additional
contribution to £, arising from equation (73) has been called the ‘sigma term’. As
a commutator of O and a spatial component of the current, it is extremely model
dependent and cannot be safely evaluated on the basis of current algebra. In fact in
a complete model calculation, e.g. on the basis of the o¢p Lagrangian, there could
(and probably will) be so-called Schwinger terms cancelling the ‘tensor form factor’
in equation (73). In a quark shell model of the nucleon, with symmetrical S
wavefunctions, g = N(f, igg - #}", and using the Goldberger—Treiman relation, Nath
and Singh (1989) have obtained the following contributions for the chiral symmetry
breaking {(csB) terms to the isospin amplitudes

A§E§B) = () AECSHJ = 2nme/m, A%E"?SB) =9 ?}m.;./m (74)
where

=3[P rigrar /[Pt ar =1 +36026a~07. (15)
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Up to this point we have assumed that the two light quarks have the same current
mass m,. Obviously, this is not the case and the mass splitting ém is of the same
order as the masses themselves. As a consequence the isospin symmetry expressed
in equation (9) will be broken by the ‘sigma term’, and the amplitude A" in
equation (72) would have to be replaced by (Tiator and Drechsel 1989)

mg &, 1+ 57,
Al = 2n — (1 + )
s 1':'l.i*;i*.',ﬁ 2mg 3

(76)

. The resulfing corrections are quite large for neutral pions. In particular they nearly
cancel the leading order term for the pn° amplitude. It is even more surprising that
the leading term for na” now stems from convection currents of the quarks!

In a recent extension of this work, Schifer and Weise (1991) have found a strong
model dependence of this effect in a chiral model with a pion cloud surrounding the
quark bag. In particular, the additional term decreases strongly with the radius of
the quark bag. It is interesting to note that the size of the effect is related, in this
model, to the strength of the singlet axial coupling constant responsible for the ‘spin
crisis’ in deep inelastic lepton scattering.

While the i1dea of Furlan et al may explain some of the discrepancies between LET
and the data, there are some serious flaws connected with it. In particular,

(1) the additional term in equation (73) is not gauge invariant,

(i1) there is no motivation for the additional term in a ficld-theoretical derivation of
LET,

(i) 1t resuits from a highly model-dependent commutator relation, and

(iv) the leading term for the neutral system nz° is no fonger the magnetic moment
but the convection current of the constituents,

5. Models of pions and nucleons

5.1. Phenomenological models

On the phenomenological basis, the first theory of nucleons and pions was
tormulated with a pseudoscalar (ps) coupling. Such a theory can be renormalized.
However, we realize now that this model does not obey the pcac relation. The

I.agrangian is given by terms describing the free nucleon, the free proton and the ps
interaction,

L=y —m)y + ("D 3, ® —m2D - ®) + 3 Lim = —igPysty - ®.  (77)
The equations of motion derived from this Lagrangian are | |

(ip—m)y =igysv - Dy (0 + m)®* = —igPyst*y. (78)
It can be shown that £ is invariant under the infinitesimal transformations

U): y—(1-ie)y
SU2): vy~ (1-it-e)y and P>P+exP

(79)

teading to the conserved isoscalar and isovector components of the electromagnetic
current,

Jim =39y, (1 + 1) ¢ + (P X g, ®);. (80)
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However, the (isovector) axial current is not conserved. The transformation
SUR2): y—>(1—3t- eys)y and P->P+fe (81)

leads to

— L= (—mLfr @ +i(m —f£8)Yysty — gYyY D). (82)
While the first term on the rus has the right structure, the other two terms violate
pcac. The second one can be removed by an appropriate choice of the coupling
constants. Except for renormalization effects of the axial coupling constant, g, #1,
it vanishes due to the Goldberger—Treiman relation, equation (59). However, ps
coupling does not fulfil pcac due to the last term in equation (82). As a consequence
a calculation of the Born terms with ps coupling gives a result differing from
equation (64) in the magnetic moment terms.

A competing model contains a gradient or pseudovector (pv) coupling,

Py =mi,, DyaysTY - 4. (83)

If we require that pion production by an on-shell nucleon has the same strength in
both cases,

f g 1

m, 2m 2f, (84)
the somewhat unsymmetrical transformation
SU2): w— and B> B+ fe (85)
- leads to the appropriate axial current
| = Py TY + £ 3,0 (86)

fulfilling the pcac relation.

A more satisfactory ps theory can be derived from equation (83) by a redefinition
of the baryon field,

RS exp(i S T- ib'ys)lf) | (87)
m-ﬂ-’
leading back to the ps coupling of equation (77) plus higher order interaction terms.
In particular we obtain the additional interaction (Fubini et al 1965)

eF#Y
Loy =1 / PO, {Ks + Toky, T+ ®}ysy (88)

ni,. 4m

where F* is the electromagnetic field tensor and k., are the isoscalar and 1sovector
anomalous magnetic moments of the nucleon. Since the Lagrangian is now
equivalent to pv coupling, such a modified ps theory fulifils LET.

Unfortunately, the pv model cannot be renormalized. Moreover, the transforma-
tion of equation (85) is against the spirit of considering both nucleons and pions
under local transformation involving the isospin. A model improving the situation

and, at the same time, giving a very exact description of S- and P-wave pion
scattering on nucleons, 1s the Weinberg model (1967),

f[}

.TI!-'

int = ”% YYuYsTY - 3P+ yyrry - (5, X B) (89)
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with f%/4x =0.08 and f,=0.84 fixed by the experimental scattering lengths for P
and S waves, respectively. Due to the non-linearity in the second term of equation
(89), the (conserved) vector currents and the (partially conserved) axial currents
now contain interaction terms in addition to the currents of free pions and nucleons
(equations (80) and (86)). In particular, the rus of the pcac relation (48) now
contains terms of order ®°.

5.2, Constituent quark model

Non-relativistic quark models have been successfully applied to the excited states of
the nucleon and their coupling to photons and pions (Isgur and Karl 1978, Copley et
al 1969, Koniuk and Isgur 1980). With a harmonic oscillator potential describing the
confinement, the problem of spurious cM motion can be avoided, leading to ‘the
right degrees of freedom moving at the wrong speed’. An additional hyperfine force,
a restdual interaction of gluon exchange between the quarks, mixes the harmonic
oscillator orbits and leads to a realistic splitting of the oscillator multiplets.

In order to obtain LET, the pv Lagrangian, equation (83), has to be evaluated half
off-shell, leading to both intermediate quark—antiquark states (qg, Z-graphs) and
positive energy contributions. The Z-graphs are evaluated by using closure over
the negative energy spectrum, approximating the propagator by the mass of the
quark pair. The positive energy intermediate states include the dipole excitations
of the nucleon, §,; (1535), §,(1650) and S5, (1650). The photoproduction amplitude
can be analytically evaluated and expanded as a power series in the mass ratio u.
The various contributions to the S-wave amplitude near threshold are shown in table
6 (Drechsel and Tiator 1984). Due to the pv coupling the Kroll-Ruderman term is
directly obtained from the seaguil graph.

Concerning the amplitude A'"), both backward (‘Z’) and forward (‘dipole’)
propagating states contribute to leading order in u. Only the sum of these two
terms gives the result required by LET. We recall that in a model of structureless
nucleons (section 4.2) the same contribution was obtained from Z-graphs only, i.e.
intermediate nucleon—antinucleon states. The situation is particularly delicate for
the reaction yn— na®, where the convection currents O(u) cancel and only the term
O(u?u,) remains. Obviously the existence of charged constituents can manifest itself

Table 6. Predictions of the constituent quark model with pseudovector quark—pinn.
coupling for the S-wave amplitudes defined by equation (64). The pion—nuclecon mass

ratio 15 denoted by u, while u_, = é(yp:{: i) are the isoscalar and isovector magnetic
moments of the nucleon and «, is the oscillator parameter. |

Contribution A A A

Seagull 1 0 0

- TOK thy — 3t ~ T

Dipole Wwmiled  [w) 2y

N 302, 3t i,

A —asH7H, 0 —>sH 1L,

LET 1+ 6] =t aptp (0] —de e apte, + (0]

S
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only to O(¢°). In order to obtain this cancellation required by LET it is prerequisite
to treat all contributions on the basis of the same Lagrangian, 1.e.

(i) the wavefunctions of the excited states should be compatible with the ground
state wavefunction (e.g. no phenomenological form factors!),

(i) the excited spectrum should be complete and spurious cM motions have to be
removed.

We note in passing that LET also requires the existence of a non-degenerate
ground state. If we introduce the usual hyperfine interaction, the degeneracy oi the
nucleon (N) and its first resonance (A} is removed and the A contributions in table 6
appear as higher order terms in g.

5.3. Bag models

Following eatlier ideas of Bogoliubov, the relativistic MIT bag model was
formulated by Chodos et al (1974). Its Lagrangian

L= (3 qp - m)a - B)O, - 13 qq A, (50)

consists of Dirac particles moving inside a bag described by the step function ©,. In
addition, there is a bag pressure leading to a volume energy ~B and a surface term
described by the surface delta function A;. The solutions of this Lagrangian are
spherical Bessel functions with wavenumbers quantized by the boundary condition

n“gy.qg A;=0

_i.e. the component of the current in the direction of n,, perpendicular to the bag
surface, vanishes.

It is straightforward to derive that the isovector and isoscalar components of the
electromagnetic current are conserved. However, the axial current, equation (55), is
not even conserved in the limit 2, — 0, because the boundary condition corresponds
to an effective mass term. At this boundary the particles are reflected and the
helicity is changed, leading to a source of the 4-divergence of the axial current at the
surtace.

In order to allow for a conservation of helicity, isoscalar {¢) and isovector (x)
mesons have to be introduced in addition to the quarks. The Lagrangian of these o
models has the typical structure (Chodos and Thorn 1975)

a ; - | _ g-+it - xy
Lo=(iZ apg —B)Ou+4@u0F +1@uf - Sy TBg A O

In this way the surface term of L™'T has been replaced by a surface interaction of
the quarks with the ¢ and x fields, in a ‘chiral’ combination. This Lagrangian is now
invariant under the combined transformation

qg— (1 —3it- €y5)q O—>0—&' 2 X— 7 + OF
leading to a conserved (isovector) axial current
J5 = 3G, YsT°¢O, — &° %0 + o 7", (92)

Since the o field does not appear as a physical meson, it is often eliminated by the
relation o + & = % (‘non-linear o model’).
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In the ‘cloudy bag model’ the physical pion ® is related to the original boson
fields by the equations

x = f,® sin(®/f,) o = [, cos(®/f,).
The Lagrangian of the ‘non-linear’ cloudy-bag model is (Thomas 1984)

LEBM = (i > Ghg — B)@,,, — 33 exp(it - ®ys/f)q As + 3D, P) ~ smD* (93)

where D, is the covariant derivative
D, ® = (3,0)® + f, sin{®/f,) 3, P.

In order to obtain the pcac relation, a pion mass term has been added to LM,

In the case of small fluctuations of the pion field, equation (93) may be expanded
in @. Keeping only the lowest order terms, we obtain the Lagrangian of the
linearized cloudy-bag model with ps coupling at the bag surface (Kilbermann and

Eisenberg 1983)
R
2

While cBMs conserve the electromagnetic current and generally fulfil the pcac
relation, their solutions are based on relativistic shell model wavefunctions for the
three valence quarks. Therefore, the problem of spurious cM motion arises. In
particular the spectrum of intermediate states entering into a calcuiation of
threshold pion photoproduction contains spurious dipole oscillations of the cm.

Using pseudovector coupling and relativistic bag wavetunctions for massless
quarks, Scherer et al (1987) have calculated the S-wave amplitude o, at threshoid.
They have shown explicitly that the contributions stemming from intermediate
valence quark excitations (np,,) and sea quark excitations (#8,,,) cancel exactly, i.e.
the model fails to reproduce the convection current terms O(u) in the amplitudes
A®©+) The origin of this failure may be traced to the wrong treatment of cM motion
in relativistic bag models (‘the wrong degrees of freedom moving at the right
speed’). If we introduce effective charges for the positive energy contributions and a
boost operator for the bag states, the situation may be improved and a qualitative
agreement with LET is obtained.

A more quantitative and microscopical treatment has been given by Konen and
Drechsel (1991a). Based on a boost for individual quarks bound in a scalar
potential, the authors have developed a projection technique to eliminate spurious
cM motion from the excitation spectrum. Recoil corrections are treated with the
same boost operator. While the static bag model fails completely to reproduce the
amplitudes A®®, the proposed projection mechanism yields A*” = —0.41y and
A®) =—049u in close agreement with the Ler prediction A ™ =—3u. In
particular, this calculation shows that the overlap between a moving ground state
and the dipole states (npy,) is at least one order of magnitude larger than in the case
of the corresponding sea quark state (nS,,). This gives a justification for
introducing effective charges for positive but not for negative energy contributions.

In spite of the success of the non-relativistic quark models on one side and the
considerable effort necessary to remove spuriosities from relativistic bag models, it
‘is well known that the quarks inside the nucleon move at high velocity. Therefore,
it remains an important goal to develop a truly covariant model of the composite

P = FMIT 4 (3, D) - smo®” — — GysT - g A.. (94)
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nucleon. As has been recently proposed by Cao and Kisstinger (1990), the most
promising formalism for such a task is the light-cone representation allowing for a
proper decoupling of cM motion and the internal degrees of freedom and also for a
consistent boost of the three-quark system. This light-cone boost also includes the
Wigner rotation of the quarks’ spin neglected in most ‘relativistic’ quark models. For
a review of this formalism see Lepage and Brodsky (1980) and Namyslowski (1984).

Though the numerical results are somewhat disputed (Drechsel and Weber
1990}, the light-cone approach has the interesting feature that the role of the
Z-graphs in ordinary perturbation theory is taken over by the instantancous graph.
This contribution can be easily evaluated as an integral over the internal momentum
distribution of the quarks in the nucleon. As can be analytically shown, the
Instantaneous term exactly approaches the Z-graph contribution of table 6 in the
limit of large quark masses (Konen and Drechsel 1991b). However, a consistent
calculation of the resonance contributions is still missing. While the light-cone
approach guarantees the proper covariant behaviour of the wave functions, it does
not provide the complete spectrum of intermediate states necessary for calculations.
First attempts to construct the dipole excitations of the nucleon have been promising
(Konen and Weber 1990). However, they also emphasise the inherent and still
unsolved problems of the relativistic many-body system.

5.4. Skyrme model

The Skyrme model (Skyrme 1961) is an effective description of hadronic phenomena
at low energies in terms of mesonic degrees of freedom. The renewed interest in
- this model was motivated by ’t Hooft’s observation. that ocp in the large N. limit
- reduces to a theory of weakly interacting pions (’t Hooft 1974) and that baryons may
be regarded as solitons in such a theory (Witten 1979). Static properties were
calculated in the pioneering work of Adkins e al (1983) and were found to agree
with experimental values typically at the 30% level. Pion photoproduction in the
Skyrme model has been investigated by several authors. The photoproduction of
nucleon resonances up to one GeV has been calculated in semiquantitative
agreement with experiment (Eckart and Schwesinger 1986, Schwesinger er al 1989).
Since the model does not contain any parameters specifically adjusted to pion
photoproduction, this result is quite encouraging. It has been stressed by Hoodbhoy
(1986) that the topological current of the Skyrme model has special consequences
for m° production.
The Lagrangian of the original Skyrme model is given by

£=34f2Te(8,U 8*U" + (1/32%) Te([U' 8, U, U' 3, U)[U' 8*U, U 3*UY)) (95)

where U is an arbitrary SU(2)-matrix, f, the pion decay constant (experimental
value f, =93 MeV) and ¢ a parameter determining the size of the soliton. Equation
(95) is invariant under global SU(2} x SU(2) transformations. The corresponding
axial (A) and vector (V) Noether currents may be constructed by the variation

0, U=—31{U, 7} o, U=1i[U, ]
If we add a symmetry breaking term to the Lagrangian, e.g.

L= 2m2 Te(U + U' = 2) (96)
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we obtain, to lowest order in the pion field, U=1+ir- x/f, +[a%], the pcac
relation, equation (48}).

The construction of a nucleon soliton solution, using the hedgehog ansatz
Uo(x) = exp(it - £F(r)), and its subsequent quantization i1s discussed in detail by
Holzwarth and Schwesinger (1986). The momentum and kinetic energy of the
soliton may be included by replacing x by s(¢) =x — R{f) and treating R as a
collective coordinate. The Eleotmmagnetic current of the Skyrmion contains the
third component of the isovector Noether current,

JHUY =312 Te(3*UU, w)) + (i/16¢*) Te([U' 3, U, UU, w]I[UT 8*U, U' 3*U])
- 97)

and as isoscalar part the anomalous topological current
I U] = (1/4872) ¢, 0, Te(U' 3UUT 32UUT 3°U). (98)

The pion is coupled to the nucleon soliton solution in two different approaches. The
first one regards the pion as small amplitude fluctuation (Eckart and Schwesinger
1986), in the second one the pion is introduced as a chiral perturbation (Schnitzer
1985). | |

Scherer and Drechsel (1991) have studied the predictions of the Skyrme model at
threshold. Since a correct determination of the axial coupling constant in the chiral
limit is prerequisite to obtain the Kroll-Ruderman term, it is quite unfortunate that
the model has a well known problem to come close to the experimental value of this
constant. The model fails completely to reproduce the terms linear in the mass ratio
. This shortcoming is a consequence of the approximations for the pion—nucleon
coupling mechanism and, in particular, of the neglect of the Dirac sea 1n the theory.
For obvious reasons the classical hedghog ansatz and the classical projection
technique and quantization do not allow for a truly covariant theory. It is
interesting, however, that the non-linearities of the model give rise to sizeable
anomalous contributions of the seagull type.

6. Corrections to LET

6. 1. t-channel contributions

The predictions of LET depend on gauge and Lorentz invariance as well as the
assumption of a partially conserved axial current (pcAC), equation (48). Due to the
appearance of m2 on the RHS of equation (48), the divergence of the axial current
does not influence the lowest order terms of the expansion of the threshold
amplitude given in equation (64). However, there will be higher order contributions
due to anomalies {Adier 1970), e.g. because of the decay #"— 2y {photon exchange
in figure 12(g)) with the divergence

Ez

327

D;ﬁr{};m = 6&*3 EﬂvpaFHvaa (99)
where € 1S an antisymmetrical_riensm and F the electromagnetic ficld tensor. This
anomaly gives a contribution of ‘leading order’ for the production of neutral pions.

‘However, its numerical value is only of the order of 1%. Larger contributions arise
if the exchanged photon 1s replaced by vector mesons. The exchange of @ mesons In
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Table 7. Contributions of f-channel vector mesons and s- and u-channel nucleon
resonances in the phenomenological model.

a p A(1232)  N*(1535) A(1620) N*(1650)
yp—=>atn  — 0.14 —0.10 1.61 —-0.21 0.80
yvn—ap — 0.14 +0.10 —1.61 0.21 —~0.66
yp—aa’p  0.26 0.10 -0.15 0.27 0.06 0.15
yn—x'n 026 -0.10 -—0.15 0.27 0.06 0.05

the t-channel decreases the amplitude for y +p— a’+p by about 10%, the p
meson leads to a further reduction by about 3% (see table 7). Clearly, contributions
of higher mesons cannot be excluded, but there is no indication for such effects at
present.

Using an exchange mechanism as in figure 12(g), with a structureless proton in
the intermediate triangle, we obtain the following lowest order terms beyond the LET
value of equation (64):

ga 8 ms )
4 3 mi + m>

AC) = (1 n (100)

e* i gl tf) mi o ow gy mi 16
) SN S WD W O B SN CRO Rl ig -AA A BMEL, n K 8T P )
A ( TR TR dr mi+mia Aami+m? 3n

In these equations, g4 and m, are coupling constants and masses, respectively, of
axial vector—isovector mesons contributing to £§;’. Similarly V and T refer to vector
and tensor mesons, of isoscalar and isovector nature, appearing in E§} and Eg?,
respectively. The constant f, describes the induced tensor coupling appearing, e.g.,
for the pNN vertex. It is interesting to note that all higher order t-channel

corrections are positive.

6.2 s-and u-channel contributions and nucleon resonances

Further contributions of higher order in u are due to intermediate A and higher
resonances in the s- and u-channels (figure 12(e) and (f)). There have been many
calculations investigating the influence of the A. Unfortunately, the off-shell
extrapolation of propagators and vertices gives rise to large model dependencies. In
the standard units of 1073/m,., Nath and Singh (1989) find for the A contribution
0.34 = SESD = —0.10 and, for the same parameters, —1.09 < 8E. < +0.90. Their
theoretically preferred values are 0.10 and —0.02, respectively. Previous estimates
of Peccei (1969) and Olsson and Osypowski (1975) have been —0.04. The
constituent quark model {com) gives the analytical results

A = A Pm(my —m 4+ m)”! AP =240, (101)

Due to the hyperfine interaction A is O(u’), as is required by LET. These
theorems tacitly assume a non-degenerate ground state. In the limit of a vanishing
mass splitting, m,— m, the A contributions would be O(u?)!

As far as higher resonances are concerned, we are not aware of any quantitative
estimate of their influence on the E,, threshold amplitude. In a phenomenological
model the electromagnetic and strong vertices for the transition to N* resonances
should be constructed such that gauge invariance and pcac are fulfilled. In this way
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these resonances may contribute only to higher order, say O(u?) for neutral pion
photoproduction, such that the results of LET remain unchanged.

In the case of the coM, however, the internal degrees of freedom are described
explicitly. As a result the contributions of intermediate anti-nucleon states (Z-
graphs at the nucleon level) are replaced by intermediate anti-quark states (sea
quark contributions) and valence quark excitations (dipole states). Therefore, these
dipole states are essential to Obtain the result of LET in the coMm and only the terms
beyond LET should be counted as additional model-dependent contributions. As is well
known from the work of Copley et al (1969), both convection and spin currents
contribute to photoexcitation, leading to an exact cancellation for the A,, ampiitude
of the N*(1688) for w?=2a3, for an oscillator parameter ag=0.17 GeV*. With
harmonic osciliator wave functions, only the dipole states S,,(1535), S;,{1650) and
S5,(1620) can contribute beyond the nucleon and A mtermediate states. Assuming
that these states are degenerate at wy=m* —m = 3a$/m, their combined contribu-
tion is

AS = 2u(1+ 3p’m/ wo) /(1 — u*m*/ wg) |
AD = i m/wo)/ (1 — wm? o) | (102)
A = p¥(m/ wo)(L+ $pm/ wo)/(1 — u*m*/ wg).

The leading term in A 24 is due to the convection current and is already
contained in LET. All higher terms, of relative order u®, are model-dependent terms
beyond- LET. In the usual units of 107°/m,,, the multipole contributions beyond LET
are SE{Y) =0.29, SE = 0.11 and SE{) =0.82. As a consequence, 6E,. (pa’) =
0.40 gives a relatively large correction, essentiaily due to the spin current of the
quarks.

The results obtained in the framework of the coMm can only serve as a qualitative
guide. They are interesting in so far as they can reproduce LeT (for pseudovector
pion quark coupling!) and because the estimated total effect of resonance contribu-
tions to threshold production of neutral pions on the proton is not larger than about
10%. In the case of phenomenological 1sobar models the estimates are of the same
order of magnitude. Fixing the strong sNN™ coupling to the pion decay width of the
resonance and the electromagnetic yNN™* coupling to the radiative decay width, we
obtain the contributions shown in table 7. These numbers do not contain antiparticie
contributions from nucleon resonances (i.e. intermediate anti-isobar states). The use
of off-shell form factors will reduce the contributions of the higher resonances
considerabty.

0.3. Final state interactions

Due to the suppression of neutral pion production at threshold by a factor u, the
rescattering graph of figure 12(i) may become important (Laget 1981). It involves
the production of a positive pion followed by charge exchange. The rapid cross-over
from complex to real values of the amplitude might give rise to a cusp effect at
threshold (“Wigner cusp’). Since the loop diagram diverges, the results are strongly
dependent on form factors and/or renormalization procedures.

Earlier estimates of rescattering were based on an extrapolation of the k-matrix
to momenta below the sz7n threshold. The relevant matrix element is related {o the

imaginary part of the rescattering diagram. Being on-shell, it can be expressed by
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the photoproduction of a 7™ followed by the charge exchange scattering 7 n— x’p.
While the photoproduction of charged pions is much more likely than that one of
neutral pions, the process is reduced by the smallness of the scattering length for
charge exchange near threshold,

Eo. = Eo.(pn®) + ikpea(nn™ — pa”)Eq, (nm™) (103)

 where k- is the momentum of the ™. Below threshold, the correction is obtained
by k,—> ik,, resulting in a real value of the S-wave amplitude. Unfortunately, this
correction increases the discrepancy between LET and the data.

Final state interactions have recently been investigated in a dynamical model by
Yang (1989), Nozawa et al (1990), Lee et al (1991), Lee and Pearce (1991) and
Bergstrom (1991). In a coupled channels calculation the #N ¢-matrix is evaiuated
and form factors of the model are fitted to the zN phase shifts up to about 300 MeV
pion laboratory energy (see figure 4).

Using isospin symmetry, i.e. equal masses for neutral and charged pions, the
half-off-shell ¢-matrix is given by

t%(ko, k, W) =e'%*cos 8,k “(ko, k, W)

vk, k', WKk’ k, W) (104)
W - Wnﬂ(k')

k(ko, k, W) = v(ko, k, W) + dek’k'l

with a = {{JI} for angular momentum, spin and isospin, the phase shifts 0, and the
cM energy of the stN system

Wn(k') = (m* + K32 + (m% + K'H)V2 (105)

In different approaches the driving {potential) terms v® are taken either from
“separable potentials or from &N Lagrangians. The (real) k-matrix k% is related to
the phase shifts for on-shell vaiues by

tan 8, (W) = —p(ko)k “(ko, ko, W) (106)

with p(kg) = mkoE, (ko) En(ko)/W and W = W (ko).
Though all these models reproduce the on-shell phase shifts reasonably well, they
differ in the half-off-shell case being probed by photoproduction,

taniko, k, Wvink, g, W)
W - Wnﬂ(k) + iE
k% (ko, k, W (K, q, W)}
W — W:rﬂ(k) ‘

In the above expression Watson’s final state theorem is exactly fulfilled (Watson
1954)

(5:tkor 0, W) = U5alko 0, W) + [ dick?

=e!%%* cos 6411;'5’“(!(”, g)+ P j dkick? (107)

19 = te' % |¢5,|

since both the Born terms v$, and the k-matrix &% are real functions. Therefore,
contributions from the A-resonance are contained in vJ, only by its bare
(unrenormalized) form without a decay width. In this idealized case without pion

mass splitting, equation (107) leads to an Ej, amplitude at threshold which should
be identical to the resuit of the LET. Possible deviations can arise from violations of
the basic invariances required by the LET. Even if a phenomenological pion—nucieon
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potential describes the on-shell AN data it is not clear whether its off-shell
continuation is in agreement with rcac requirements. Similarly, gauge invariance is
not automatically guaranteed for off-shell processes.

Without a cut-off (off-shell form factor) in the driving terms for both the nN
interaction v* and the (y,x) amplitude vy ,, the principal value integrai of
equation (107) diverges. Therefore the result of such calculations depends strongly
on the value of the cut-off mass A in the off-shell form factors. As a consequence,
the low energy expansion of the amplitudes contains a parameter m, /A in addition
to the parameter p = m, /m of LET.

The Adler—Dothan (1966) theorem asserts that the higher- ﬂrder terms, such as
rescattering (figure 12(i)), contribute only to a relative order of u*. This requires,
however, that these higher-order terms have to be calculated in a consistent
framework of covariant perturbation theory, while the coupled channels calculations
take into account only classes of diagrams.

As an additional problem, the mass difference of m,« — M,0=4.6 MeV gives rise
to isospin symmetry breaking and drastic changes of E,, at threshold may become
possible. For the case of (v, ©") on the proton, equation (107) takes the form

'r k2 p(kﬂﬁ Q) = E’xp(lan“p) CO5 ‘a:r“ { w:“p(km Q)

—_ i@(w -, — mn+)pn+(k+)vyn+(k+, Q)E +n-—r-::“p(ku; k+, W)
+ PJ‘dkkE :t“p—-a-n“p(k(h k W)U'}" nﬂp(k q)

W — W (k)
xta (Ko, K, WV, o4k,
+Pfdkk2 P‘(V“ = )(1") -4 Q)}, (108)

where ko and k, are the on-shell momenta of #° and z* respectively, and k is
defined by the half-off-shell relation

t N w9k, K3 W) = exp(180,) €OS O 0 knﬁ_,ﬂup(kn, k W). (109)

The three terms in curly brackets on the rus of equation (108) are:

(i) the Born amphtude for yp— 2°p;

(ii) the imaginary contribution of x™ production followed by charge ‘exchange
scattering, it appears only above the s™ n threshold;

(iii) the contributions of rescattering expressed by the principal value integrals, P.

The simple k-matrix approximation of equation (103), used in the early
experimental analyses, is obtained from equation (108) by dropping the principal
value integrals, extrapolating the ©-function part below z* threshold, and evalua-
ting equation {106) at threshold, tan & - ka.

The parameters of Nozawa et al (1990) have been fitted to pmn—-nuclear
scattering and pion photoproduction in the A region (P-wave amplitudes M, and
E,.). With a reasonable cut-off A =650 MeV they obtain a good overall agreement
with the data at higher energies. In the threshold region the calculation 1s
characterized by strong cancellations of the effects of final state interactions for 27 n
and n°p channels as well as pion pole and Kroll-Ruderman terms (see table 8).

The final result shows that higher order contributions cancel to a large degree.
This is also borne out in an analytical calculation by Naus et al (1990). In a
- consistent expansion of the threshold amplitude about the soft-pion point, the
authors precisely obtain LET. All off-shell behaviour of the vertices disappears in the
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Table 8. Contributions of Born diagrams and final state interactions to the threshold
S-wave amplitude E,, (yp— 7"p) in units of 107%/m,. B, Born terms for the diagrams
(a)-(d) of figure 12 and w/p exchange (figure 12(g)). rsi(x"), corrections for
rescattering of n°. rsi(a™), production of &™ followed by charge exchange scattering. -
Results from Nozawa et af (1990).

(a) (b) (c) (d) w/p Sum
B —126 -125 0 0 022 -2.29
psi(x%) —0.10 057 0 0 005  0.52
rsi{z*) =053 -0.24 —3.07 357 0.10 —0.1S
Sum ~1.89 -092 -3.07 357 037 -192

final answer, and rescattering corrections only contribute in higher order terms not
specified by LET.

In figure 13 we show the model dependence of rescattering corrections for the
reaction yp— s°p. While all calculations reproduce the &N phase shifts reasonably
well, they differ in the off-shell continuations of the k-matrix in equations (107) and
(108). As an example, figure 14 shows the half-off-shell matrix elements of two
separable and a meson exchange potential used in such calculations. As a
consequence the results obtained for the real part of the £y, amplitude differ
substantially. The corresponding curves b, ,; in figure 13 cover a wide range
between LET and even positive values for £y, .

The three calculations b, , ; assume isospin symmetry, equation (107), i.e. the
‘thresholds for neutral and charged pions coincide, resulting in a very smooth energy
dependence of the amplitude. A similar behaviour is seen in curve a, except for the
‘region of the vy, " threshold at 151.4 MeV, where, due to the ©-function in
- equation (108), a cusp effect occurs. Starting from a chirally invariant Lagrangian,
Lee and Pearce {1991) have obtained a much larger rescattering effect, curve c.

However, it has not yet been possible to preserve chiral symmetry in the course of
the coupled channels calculation. |
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Figure 13, Model dependence of rescatiering calculations for Re E;, in the reaction
yp— 2°p. a, Nozawa et af (1990); b, 4, Lee ef af (1991), with two separable potentials
and a meson exchange model (b,) respectively; ¢, Lee and Pearce (1991); d, .,
Bergstrom (1991}, with and without isospin symmetry, respectively. For comparison we
show the result of the Born terms in pscudovector coupling which is very close to the
LET prediction at threshold. Experimental data as in figure 11,
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Figure 14, Half-off-sheil matrix element of the AN k-matrix for energy 3 MeV above
threshold according to Lee ef al (1991). The dotted, broken and full curves show the
results of two separable nN potentials and a meson exchange model, respectively, in
the same sequence as curves b, , 5 of figure 13.

A very rapid change in the E,, amplitude shows up 1n the calculation of
Bergstrom (1991), curves d,,. Keeping LET as a constraint for the isospin
symmetrical case (d;), phenomenological off-sheli form factors are introduced with
rather strong energy dependence in order to fit the data (d,).

At this point it is evident that the search for fundamental effects like chiral
symmetry breaking in threshold pion production or even subnucleonic degrees of
freedom (sigma term) become totally obscured by the present model dependence of
rescattering effects.

A possible approach avoiding these problems might be a chiral perturbation
theory without any additional off-shell parameter. It remains to be seen whether
such calculations confirm the expansion of Ler or if additional terms such as

log(m../m) appeart.

7. Summary and conclusions |

Investigations with electromagnetic interactions have contributed substantially to
our knowledge of the structure of hadrons. With the advent of the new accelerators,
polarization degrees of freedom will play a decisive role in unravelling the unsettled
questions. Typical examples range from the distribution of the neutron’s charge seen
in elastic electron scattering to the spin content of the nucleon in deep inelastic
scattering and its relation to ocp based predictions.

Photo- and electroexcitation of the nucleon and meson production promise to
determine some of the most wanted observables at intermediate energies, e.g.

T In a very recent paper by Bernard et af (1991) the threshold amplitude for neutral pion photoproduction
has been studied to one loop in chiral perturbation theory. In a certain class of diagrams there appear
logarithmic singularities violating the usual assumption of LET that the amplitude can be expanded around
the soft-pion point. As a consequence they obtain additional large terms of order u?
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(i) the L,,/E,, amplitude in the range of the A(1232) related to the intrinsic
deformation of the nucleon,

(i) the L, amplitude, particuiarly for the Roper N*(1440), the breathing mode of
the nucleon,

(iii) the high rate for n meson production near the N*(1535) and at higher energies,
(iv) the production of two pions or more in order to test consequences of chiral
symmetry and the interaction of low energy pions or to find the ‘missing resonances’
at higher energy.

The strange behaviour of the threshold Ey, amplitude has added another
challenge to future experiments. As may be secen 1n figure 15, the Mainz results
show an amplitude dropping from its LET value at " threshold to essentially zero at
n* threshold, while the existing multipole analyses of the data at the higher energies
predict a siowly varying function with a mean value close to LEr. Both the
fluctuation at small energies and the large statistical and systematical error bars at
the higher energies show the need for new and vigorous investigations in order to
bridge the gap between the new and the old data. This includes the challenge to
measure n(y, 7°)n together with p(y, #')p in ‘quasifree kinematics’ for *H and *H
targets, because the fourth physical amplitude allows violations of isospin
symmetry to be studied. Of similar interest is the study of the (e, e'x°) reaction in
order to see whether the threshold puzzle persists for the L,, amplitude and, at the
higher momenta, to check the consistency of the models and the influence of the
nucleon’s axial and vector form factors and of the pion fﬂrm factor on the
production mechanism.

With the Mainz Microtron the first accelerator of a new generation has gone into
operation to meet the challenge of the experiments proposed above. The high-duty
“factor and the high current of these accelerators will be a prerequisite for crossing
“the new frontier in electromagnetic physics, the transition from inclusive(single-arm)

140 160 180 200 220 240

w {MeV)

Figure 15. Real part of the £, amplitude for the reaction yp-> #% between threshold
and 250 MeV photon encrgy. Broken curve, Born terms with pv coupling; dotted curve,
Born terms plus vector meson ¢xchange and A contribution, full curve rescattering
calculations (Nozawa ef al/ 1990, Blankleider 1991), The data points refer to the
following multipole analyses: O, Mainz data (as in caption to table 5); O, Pfeil and
Schwela (1972); @, Berends and Donnachie (1975); A, Crawford and Morton (1983):
&, Arndt et al (1990).
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to coincidence experiments. This development will allow study of the correlations
between the constituents of the nucleon in a qualitatively novel way, at a time when
the problem of strong interactions in the confinement phase becomes ever more
interesting. Such investigations require a high degree of precision and endeavour.
However, they will increase our knowledge of the hadronic structure in a qualitative
way, contribute to a better understanding of the confinement problem and, very
likely, will lead to the discovery of new exciting phenomena.

Appendix A. Transformation of differential cross section

The laboratory cross section can be easily obtained by multiplying equation (22)
with the Jacobian

dQM k2 W
dQ%  |kcul (1 + @) k |—w,| g [cos O|

where all variables (except ko) are evaluated in the laboratory frame. The angular
distribution for the recoiling nucleon may be obtained using the Jacobian

dQSM B 1P| W
dQyx  lkemi (m; + @)| Pr |—E;| g |cos O]

Appendix B. The response functions for photo- and electroproduction including
target and recoil polarization

In this appendix we express the response functions of equation {27) in terms of the
cGLN amplitudes of equation {4). All angles are pion cm angles, i.e. =0,
® =¢,.. Both the polarization of the target and of the recoiling nucleon are
measured with regard to the three axes I (along the momentum of the outgoing
nucleon), £ =/ X [ and # (normal to the reaction plane, in the direction of § X k).
For example, P, =# - Sk is the projection of the spin vector (in the proton rest
frame!) unto the axis normal to the reaction plane.

In the formulae the subscripts i,f in /; ;. , and n; , denote target or recoil
polarization, respectively.

do, |k
dQSM  kSM

(W, + W,,) + &L W, — [2e(1 + £)] > Re W,,

+38(W,, — W)+ h2e.(1 - &)]"*ImW,, + h(1 — e)*Im W, }
with the transverse response functions
%(Wxx + %y) =Rr+ P,Ry(n)
Ry =|R*+ |B* + 3sin® OB + |F)

—Re{2¢cos OF {E, —sin” ©O(FTF, + F3F, + cos OF i F,)}
Ri(n;) = +sin © Im{FTE ~ F;F, +cos ®(FF, — F3E) —sin* ©OF3F,)
Ri(ng) = —sin @ Im{2F{E + F{FK, — F3F, + cos O(F{F, — F;E) —sin” OFF,}
Rr(l) =R(t) =0
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the longitudinal response functions
W,, = Ry + P,R.(n)
Ry = |’ + |F[* + 2 cos © Re{F}F,)
Ri{n;) = —R_(n;) = —2sin © Im{F3 Fy}
R()=R()=0
the response functions for transverse—longitudinal interferences
Re W, = —cos @Ry — sin ®P,Ry (1) — sin @ PRy (¢) — cos OP,RrL(n)
R = —sin ® Re{(Fi + F5 +cos OF)F+ (F} + Fi + cos OF3)F;}
R (1) =sin ® Im{F{ — 2 cos OF)F; — F; K}
Ry (l;)=—sin © Im{F{F + F; F}
R (t) = Im{(cos OF — cos 20F3)Fs + (F{ — cos OF3) K}
R (t;) =Im{(F3 — cos OF)F; — (F{ — cos OF )}
Rr(r) = —Ry(n,) = —Im{(F} — cos OF 5 + sin’ OF{) K,
— (F5 —cos OF [ +sin*@F)F,)}
the response functions for transverse—transverse interferences
(W, — W,,) = 008 2R 11 + sin 2@ PR (1) + sin 20 P,R(t) + cos 20P, Rr(n)
Rip= +sin* OG(|B]* + [FE*) + Re{F{E, + F3F, + cos ©F;F,})
-'-RTT(E,-) = —sin“ @ Im{2FTFK+ F{F,— F3F, —2cos OF F}
R(l) = +sin” © Im{F{F, + F3F,}
Rer(t)) = —sin © Im{F F, + cos O2FtF, + FF, — F1F,) — cos 20F} Fy)
'. Rr(t;) =sin @ Im{F{F, — F; 5+ (F{F — F3F,) cos ©}
Roc(n;) = +sin © Im{2F ' F, + F*F, — F}F, + cos O(F}F, — F}F) — sin* OFF,)
Rir(ns) = —sin@ Im{F{ K~ F;E+ (F{F,— F;F)cos © - F3F, sin® ©} |

the response functions for polarized -clectrons and transverse-longitudinal
interferences -

Im W,, = sin @Ry + cos PP Ry (1) + cos PFPR(¢) + sin ®F, R (n)
R . =—sin®Im{(F;+ F} +cos OF )+ (F{ + F; + cos OF ) K}
Rt () =sin @ Re{(F —2cos OF)F; — F3F,)
Rr(l) = —sin ® Re{FF + F3F)} |
R (&) = Re{(cos OFT — cos 20F)YE, + (F{ — cos OF )}
RriAty) = Re{(F3 —cos OF [ )F; — (F{ — cos OF3)}F}
Ry.(n) = —Ryo(n) = Re{(F{ — cos OF; + sin® OF ) F;
— (F% —cos OF ¥ +sin? OF)E,)
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and the response functions for polarised electrons and transverse—transverse
interferences

Im W,, = PRy (l) + PR¢(t)
Rrr(1;) = cos O FJ° + |51%)

— Re{2 cos® OF {F, + sin” O(F{F, — F3F, — 2 cos OF3F)}
Rrr(ly) = —cos O(F|* + |BJ?) + Re{2FF, + sin* ©(F{F + F3 F))
Rip(t) = —sin O(|F|* + |E|* + Re{FF, — cos ©Q2F}F,

—FiE+ F,F) —cos 20F3E})
Rt} =sin O(F|* — |Ef* + Re{F]F, — F3F + cos O(F{ F, — F;F,)})
Rpr{n)=10.

Appendix C. Multipole decompositions of the response functions

Using the multipole decomposition of the ¢GiN amplitudes of equation (8), the
structure functions are expressed in multipoles up to I = 1.

Rr=|Eosl*+52My s + My P+ 3 3E, . ~ My + M, |

+2cos ® Re{Ef,(BE, . + M, — M,_))}

+cost O(BE .+ M, —M,_P—Li12M,, + M,

—2BE . — M + M, _|)
Ri(n)=3sin © Im{E{,(E1. — M,,) — cos O(EL.(4M,, — M,_) + M}, M, )}
Ry(ng)=—sin @ Im{Ey, (3E,, + My, +2M,_)+3cos ©BET, + MT OM,_)
Ru=|Los|"+4|L i P+ |L,?— 4 Re{L{,L,_}

+2cos @ Re{L3, (4L, + L)} +12cos’ O(|L . |* + Re{L* L,_})
Ry(n)=—Ry(n;)=+2sin®Im{L5, 2L, ~L,_)—6cos OL{,. L, }
Ry = —sin ® Re{Lg, BE\, — M, + M,_)—(2L%, - L} )E,.,

+6cos O(LY (E\, — M, + M)+ LI E,..))
R ()= —sin©®Im{Lg Ey, + LT, — LT Y2M,, + M, )

| +cos O(LE,(3E s — My, — 2M,_) + 6L* E,,)

+6cos® OLT, (BE,, — M, —2M,_))
Rril) =sin © Im{Lg, Eo, — 2Ly, — LY )M, + M, )

+3cos O(Lo (B, + M)+ 2L Ey,) +18cos’ OLT (E, . + M,.)}
Ry (t) = ~Im{Lg, 2M,, + M,_) — LY, — L{.)E,,

+cos (Lo, Eg, —2LT,(3E,, — 5M,, — 4M,_)

+ LY BE .+ M — M, ))+cos®> O(LE BE . — My, —2M,_)

+ 6L, Ey ) +6cos” OLY, (BE,, — M, —2M, )}
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R (t) = —Im{Lg (M, + M,_} + LY. — LT )E.
—cos (Lo, Ey, — 2_L;";(3E1+ + TM, . +2M,_)
+ L} (BE s + My, — M)
—3cos® O(LJ (B + M)+ 2L Ey, ) — 18cos® OLT(E . + M,.)}
Rr(n;) = —Rons) =Im{L¢ Ey, + QLY —~ LT_)3E,  — M, +M,_)
+cosO(Ly, (BE,, + M, — M, Y+ (4L}, + LT )Ey,)
+6cos* ALY (E+ M, —M )+ LIE.))
Ryr=3sin” O |E . " — 5 IM " —Re{E{, (M. — M)+ M{.M,_})
Rer(l,) = —sin* @ Im{E}, (3E,, + M,, +2M, )+ 6 cos OFET (M,, +2M;.)}
Rr(l;) =3sin* @ Im{E}, (E,, — M,.) — 6cos OET. M,.,)
Ry(t) = —sin ©® Im{—3E},(2M,, + M, ) +3M} . M,_ |
+cos OES, (BE,, + M,, +2M,_) + 6 cos’ OFEF, (M, +2M,.)}
Rr{t;) =3sin @ Im{ET, (M, + M,_) — M} M,_
+cos® Ef (E,, —M;,)—6¢cos* OET, M, }
Ri(n;)=sin © Im{E}, (3E . + My, +2M, )+ 3cos OBE}, + M*IM,_)
Rir(ng)=-3sin @ Im{EG (E,, — M, ) —cosO(E],(4M, ., — M, )+ M; .M )}
R =sin® Im{L§,(3E,, — My, + M,.) — L}, — LT_)E,,
+6cos (LI, (E,, — M, +M_)+ L;“_EH_)}
Ry (f;) =sin ©® Re{Lg, Ey, + (2LY, — LT—)(ZMH + M,_)
| +cos O(Ly (BE,, — My, —2M,_) + 6L, Eo. )
+6cos’ OLT, (BE,, — M, —2M,_)}
Ry () = —sin @ Re{Ly, Ey, — (2L}, — LT)YQM,, + M,_)
+3c0s O(Loy (Ers + M, )+ 21T, Eg,) + 18 cos> OLY (E ., + M,.))
Ro () = Re{Lg, My + M;.) — (LT, — LI_)E,,
+cos (Lo Egy — 207 (3E . —5M,, —4M,_)
+ LT BE,, +M,,— M)
+cos® O(LG, BE |, — M, —2M,_) + 6L}, E,,)
+6cos’OL}, (3E,, — M, —2M,_)}
Rru(t;) = Re{L3,(2M,, + M,_) + L}, — L}.)Eq,
~cos O(Ly Egs — 2L, BE,, + TM,( +2M,_)
+ LT (GE, .+ M, — M)
~- 3 cos” @(L§+(El+ + M)+ 2L, Ey) —18cos’ OLY, (B, + ML)
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Reuin) = —Rru(ny) = +Re{ L3, Egy + (LY. — LE)GE 1, — My, + M)
+cos O(LE, (BE . + M, — M)+ (AL, + Li_)Esy)
+6cos?OL(E .  + M, — M. )+ LI_E}}
Ryr(l) = =3 Re{Eg. (E\. — M)
+cos O(|Eo.f*— 9 |E o |*+ My )2+ M
+2 Re(3E], (2M,, + My ) — M M, )
+cos? O Re{E} (9E . — M, —2M,)}
+6c0s° O |E, [P — Re{ET (M, +2M,_)})
Ror(lp) = Re{EtBE 1, + My, +2M,))
— cos O(|Egs [P — 9 1E P+ M P+ 1M |
—2Re{3EX,(2My, + M) + M}, M ))
—3c0s>® Re{ES, (3E,. + M)} — 18 cos’ O(|E . 1* + Re{ET: M. })
Rop(t) = —sin O Eq.|? — 2 My, |2 + IM_|* + Re(BET, (2M,, + M) + M{.M,_}
+cos© Re{Eq . (OF, — M, —2M,_)}
- +6c0s> OB |E L P — Re{El (M, +2M; )} )
Ryp(ff) =sin O Eg.|* + 2 |My4]* - M, _|> — Re{3E},(2M,, + M,_) + M{.M,_}
+3cos © Re{Es . (BE 1+ + M)} +18¢cos” O(IE .| + Re{ET M), })).

Appendix D. Response functions in different coordinate systems

The right-handed coordinate system {é.,é,,€,} of equation (16) defines the
scattering plane of the electron. The reaction plane is defined by the virtual photon,
g =(0,0, 1), and the pion, k = (sin © cos @, sin © sin @, cos ©). In the cm frame
3=—P and &k ::f}, hence the vector normal to the reaction plane is i = (&, X
P)/sin © = (g X k)/sin ©.

In the following we will use two different coordinate systems to describe the
polarization degrees of freedom. In order to have easy transformation formulae
between the two systems, one axis is always chosen normal to the reaction plane.
System 1. Recoil polarization is usually analysed (‘Madison convention’) 1n a
coordinate system {&,é,, &}, where ¢ =f} = —k points into the direction of the
recoiling proton and €, = #.

System 2. For target polarization it is more convenient to choose a right-handed
coordinate system {&,, &,, &;}, wherc & = § points into the direction of the virtual
photon and é, = #. |

The response functions of equation (27) may be wriiten as foliows:

Rr= %(|'ﬂﬂ+|2 + lﬂﬂ2 + |i‘51a=-r|2 + |ﬂf|2) Ry(n) = “‘Im(ﬂﬂﬂf: == a;af’)
Ry = lbﬂ1 + lbf Ry(n)=412 Im(b,b;)
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Table Al.

(€, 6..8) (81,82, 8:)

a, =.5in @F 4, = sin OF,

a, = 2cos OF + E, +sin” OF, a, = F, — cos @F, + sin” OF,

a, = F — cos OF a,=F —cos OF,

a,=—-sin ®(F, +cos OF + F) a, =sin O(F, + F, + cos OF,)

b, = sin OF; b.=sin QF,

b= —cos @F; — K b,=F,+cos OF

Rypr= %(“‘“|ﬂﬂ|2 + |a,i* — |a, 11 + |ﬂ¢'|2) Ryr(n) = Im{aea, ¥ aa,’)
Rrr(l) = Im{aga/ £ a,a;) R (¢) = Im(apa” + a,ai)

R"r"'l"' = R'I"'I"’(”) == (J

RT'T’(E) = “"RE(H{}Q?: :F ﬂ;ﬂ:ﬁ R*['[‘*(I) — "“Rﬂ(ﬂuﬂ:: + ﬂﬂﬂ?)
RTL = *Rﬂ(ﬂ;b?‘ -+ ﬂrb::) RTL(”) — :FIm(ﬂfb?: - ﬂ;br)

Ry (1) = ~Im(aob; F a,b;) Ry () = —Im(aoh; * a,b)
Ro =Im{ab! + ab)) Ry (n) = FRe{ab) — a;b})
-RTL’(I) - RE(ﬂubr ae H"b:t) LRTLP(I) — RE(H[]b;i :t ﬂnb?).

The signs in these formulae correspond to recoil polarization (upper sign) and target
~polarization (lower sign), respectively. The transition from system 1 to system 2 1s
- obtained by exchanging (¢, n,[)— (1, 2,3). The coefficients g; and b; are combina-
tions of the coLN amplitudes of equation (8) as defined in table Al.

We note that the non-spin-flip part of the current {a,) and the normal component
(a,) remain unaffected by the transition from system 1 to system 2, while the
components in the reaction plane are related by a rotation with angle (7 — ).
(Note that the same symmetries apply for the response functions.)
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